版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023年中考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖,四邊形ABCD內(nèi)接于⊙O,若∠B=130°,則∠AOC的大小是()A.130° B.120° C.110° D.100°2.下面幾何的主視圖是()A. B. C. D.3.已知拋物線y=(x﹣)(x﹣)(a為正整數(shù))與x軸交于Ma、Na兩點(diǎn),以MaNa表示這兩點(diǎn)間的距離,則M1N1+M2N2+…+M2018N2018的值是()A. B. C. D.4.如圖,點(diǎn)A,B為定點(diǎn),定直線l//AB,P是l上一動點(diǎn).點(diǎn)M,N分別為PA,PB的中點(diǎn),對于下列各值:①線段MN的長;②△PAB的周長;③△PMN的面積;④直線MN,AB之間的距離;⑤∠APB的大小.其中會隨點(diǎn)P的移動而變化的是()A.②③ B.②⑤ C.①③④ D.④⑤5.如圖,小明要測量河內(nèi)小島B到河邊公路l的距離,在A點(diǎn)測得,在C點(diǎn)測得,又測得米,則小島B到公路l的距離為()米.A.25 B. C. D.6.對于代數(shù)式ax2+bx+c(a≠0),下列說法正確的是()①如果存在兩個(gè)實(shí)數(shù)p≠q,使得ap2+bp+c=aq2+bq+c,則a+bx+c=a(x-p)(x-q)②存在三個(gè)實(shí)數(shù)m≠n≠s,使得am2+bm+c=an2+bn+c=as2+bs+c③如果ac<0,則一定存在兩個(gè)實(shí)數(shù)m<n,使am2+bm+c<0<an2+bn+c④如果ac>0,則一定存在兩個(gè)實(shí)數(shù)m<n,使am2+bm+c<0<an2+bn+cA.③ B.①③ C.②④ D.①③④7.已知一元二次方程的兩個(gè)實(shí)數(shù)根分別是x1、x2則x12x2x1x22的值為()A.-6 B.-3 C.3 D.68.一個(gè)不透明的盒子里有n個(gè)除顏色外其他完全相同的小球,其中有9個(gè)黃球,每次摸球前先將盒子里的球搖勻,任意摸出一個(gè)球記下顏色后再放回盒子,通過大量重復(fù)摸球?qū)嶒?yàn)后發(fā)現(xiàn),摸到黃球的頻率穩(wěn)定在30%,那么估計(jì)盒子中小球的個(gè)數(shù)n為()A.20 B.24 C.28 D.309.如果,那么()A. B. C. D.10.下列式子成立的有()個(gè)①﹣的倒數(shù)是﹣2②(﹣2a2)3=﹣8a5③()=﹣2④方程x2﹣3x+1=0有兩個(gè)不等的實(shí)數(shù)根A.1 B.2 C.3 D.411.如圖,已知點(diǎn)A、B、C、D在⊙O上,圓心O在∠D內(nèi)部,四邊形ABCO為平行四邊形,則∠DAO與∠DCO的度數(shù)和是()A.60° B.45° C.35° D.30°12.如圖1,在△ABC中,D、E分別是AB、AC的中點(diǎn),將△ADE沿線段DE向下折疊,得到圖1.下列關(guān)于圖1的四個(gè)結(jié)論中,不一定成立的是()A.點(diǎn)A落在BC邊的中點(diǎn) B.∠B+∠1+∠C=180°C.△DBA是等腰三角形 D.DE∥BC二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.計(jì)算a10÷a5=_______.14.關(guān)于x的一元二次方程有實(shí)數(shù)根,則a的取值范圍是__________.15.如圖,sin∠C,長度為2的線段ED在射線CF上滑動,點(diǎn)B在射線CA上,且BC=5,則△BDE周長的最小值為______.16.高速公路某收費(fèi)站出城方向有編號為的五個(gè)小客車收費(fèi)出口,假定各收費(fèi)出口每20分鐘通過小客車的數(shù)量分別都是不變的.同時(shí)開放其中的某兩個(gè)收費(fèi)出口,這兩個(gè)出口20分鐘一共通過的小客車數(shù)量記錄如下:收費(fèi)出口編號通過小客車數(shù)量(輛)260330300360240在五個(gè)收費(fèi)出口中,每20分鐘通過小客車數(shù)量最多的一個(gè)出口的編號是___________.17.如圖,AB是⊙O的直徑,點(diǎn)C在AB的延長線上,CD與⊙O相切于點(diǎn)D,若∠C=20°,則∠CDA=°.18.寫出一個(gè)平面直角坐標(biāo)系中第三象限內(nèi)點(diǎn)的坐標(biāo):(__________)三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)解不等式組:20.(6分)已知邊長為2a的正方形ABCD,對角線AC、BD交于點(diǎn)Q,對于平面內(nèi)的點(diǎn)P與正方形ABCD,給出如下定義:如果,則稱點(diǎn)P為正方形ABCD的“關(guān)聯(lián)點(diǎn)”.在平面直角坐標(biāo)系xOy中,若A(﹣1,1),B(﹣1,﹣1),C(1,﹣1),D(1,1).(1)在,,中,正方形ABCD的“關(guān)聯(lián)點(diǎn)”有_____;(2)已知點(diǎn)E的橫坐標(biāo)是m,若點(diǎn)E在直線上,并且E是正方形ABCD的“關(guān)聯(lián)點(diǎn)”,求m的取值范圍;(3)若將正方形ABCD沿x軸平移,設(shè)該正方形對角線交點(diǎn)Q的橫坐標(biāo)是n,直線與x軸、y軸分別相交于M、N兩點(diǎn).如果線段MN上的每一個(gè)點(diǎn)都是正方形ABCD的“關(guān)聯(lián)點(diǎn)”,求n的取值范圍.21.(6分)先化簡,再求值:,其中滿足.22.(8分)先化簡再求值:(a﹣)÷,其中a=1+,b=1﹣.23.(8分)如圖1,二次函數(shù)y=ax2﹣2ax﹣3a(a<0)的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),與y軸的正半軸交于點(diǎn)C,頂點(diǎn)為D.(1)求頂點(diǎn)D的坐標(biāo)(用含a的代數(shù)式表示);(2)若以AD為直徑的圓經(jīng)過點(diǎn)C.①求拋物線的函數(shù)關(guān)系式;②如圖2,點(diǎn)E是y軸負(fù)半軸上一點(diǎn),連接BE,將△OBE繞平面內(nèi)某一點(diǎn)旋轉(zhuǎn)180°,得到△PMN(點(diǎn)P、M、N分別和點(diǎn)O、B、E對應(yīng)),并且點(diǎn)M、N都在拋物線上,作MF⊥x軸于點(diǎn)F,若線段MF:BF=1:2,求點(diǎn)M、N的坐標(biāo);③點(diǎn)Q在拋物線的對稱軸上,以Q為圓心的圓過A、B兩點(diǎn),并且和直線CD相切,如圖3,求點(diǎn)Q的坐標(biāo).24.(10分)如圖,在Rt△ABC中,∠C=90°,AC,tanB,半徑為2的⊙C分別交AC,BC于點(diǎn)D、E,得到DE?。?)求證:AB為⊙C的切線.(2)求圖中陰影部分的面積.25.(10分)如圖,已知∠ABC=90°,AB=BC.直線l與以BC為直徑的圓O相切于點(diǎn)C.點(diǎn)F是圓O上異于B、C的動點(diǎn),直線BF與l相交于點(diǎn)E,過點(diǎn)F作AF的垂線交直線BC于點(diǎn)D.如果BE=15,CE=9,求EF的長;證明:①△CDF∽△BAF;②CD=CE;探求動點(diǎn)F在什么位置時(shí),相應(yīng)的點(diǎn)D位于線段BC的延長線上,且使BC=CD,請說明你的理由.26.(12分)“校園詩歌大賽”結(jié)束后,張老師和李老師將所有參賽選手的比賽成績(得分均為整數(shù))進(jìn)行整理,并分別繪制成扇形統(tǒng)計(jì)圖和頻數(shù)直方圖部分信息如下:本次比賽參賽選手共有人,扇形統(tǒng)計(jì)圖中“69.5~79.5”這一組人數(shù)占總參賽人數(shù)的百分比為;賽前規(guī)定,成績由高到低前60%的參賽選手獲獎.某參賽選手的比賽成績?yōu)?8分,試判斷他能否獲獎,并說明理由;成績前四名是2名男生和2名女生,若從他們中任選2人作為獲獎代表發(fā)言,試求恰好選中1男1女的概率.27.(12分)甲班有45人,乙班有39人.現(xiàn)在需要從甲、乙班各抽調(diào)一些同學(xué)去參加歌詠比賽.如果從甲班抽調(diào)的人數(shù)比乙班多1人,那么甲班剩余人數(shù)恰好是乙班剩余人數(shù)的2倍.請問從甲、乙兩班各抽調(diào)了多少參加歌詠比賽?
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、D【解析】分析:先根據(jù)圓內(nèi)接四邊形的性質(zhì)得到然后根據(jù)圓周角定理求詳解:∵∴∴故選D.點(diǎn)睛:考查圓內(nèi)接四邊形的性質(zhì),圓周角定理,掌握圓內(nèi)接四邊形的對角互補(bǔ)是解題的關(guān)鍵.2、B【解析】
主視圖是從物體正面看所得到的圖形.【詳解】解:從幾何體正面看故選B.【點(diǎn)睛】本題考查了三視圖的知識,主視圖是從物體的正面看得到的視圖.3、C【解析】
代入y=0求出x的值,進(jìn)而可得出MaNa=-,將其代入M1N1+M2N2+…+M2018N2018中即可求出結(jié)論.【詳解】解:當(dāng)y=0時(shí),有(x-)(x-)=0,解得:x1=,x2=,∴MaNa=-,∴M1N1+M2N2+…+M2018N2018=1-+-+…+-=1-=.故選C.【點(diǎn)睛】本題考查了拋物線與x軸的交點(diǎn)坐標(biāo)、二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征以及規(guī)律型中數(shù)字的變化類,利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征求出MaNa的值是解題的關(guān)鍵.4、B【解析】試題分析:①、MN=AB,所以MN的長度不變;②、周長C△PAB=(AB+PA+PB),變化;③、面積S△PMN=S△PAB=×AB·h,其中h為直線l與AB之間的距離,不變;④、直線NM與AB之間的距離等于直線l與AB之間的距離的一半,所以不變;⑤、畫出幾個(gè)具體位置,觀察圖形,可知∠APB的大小在變化.故選B考點(diǎn):動點(diǎn)問題,平行線間的距離處處相等,三角形的中位線5、B【解析】
解:過點(diǎn)B作BE⊥AD于E.設(shè)BE=x.∵∠BCD=60°,tan∠BCE,,在直角△ABE中,AE=,AC=50米,則,解得即小島B到公路l的距離為,故選B.6、A【解析】設(shè)(1)如果存在兩個(gè)實(shí)數(shù)p≠q,使得ap2+bp+c=aq2+bq+c,則說明在中,當(dāng)x=p和x=q時(shí)的y值相等,但并不能說明此時(shí)p、q是與x軸交點(diǎn)的橫坐標(biāo),故①中結(jié)論不一定成立;(2)若am2+bm+c=an2+bn+c=as2+bs+c,則說明在中當(dāng)x=m、n、s時(shí),對應(yīng)的y值相等,因此m、n、s中至少有兩個(gè)數(shù)是相等的,故②錯(cuò)誤;(3)如果ac<0,則b2-4ac>0,則的圖象和x軸必有兩個(gè)不同的交點(diǎn),所以此時(shí)一定存在兩個(gè)實(shí)數(shù)m<n,使am2+bm+c<0<an2+bn+c,故③在結(jié)論正確;(4)如果ac>0,則b2-4ac的值的正負(fù)無法確定,此時(shí)的圖象與x軸的交點(diǎn)情況無法確定,所以④中結(jié)論不一定成立.綜上所述,四種說法中正確的是③.故選A.7、B【解析】
根據(jù)根與系數(shù)的關(guān)系得到x1+x2=1,x1?x2=﹣1,再把x12x2+x1x22變形為x1?x2(x1+x2),然后利用整體代入的方法計(jì)算即可.【詳解】根據(jù)題意得:x1+x2=1,x1?x2=﹣1,所以原式=x1?x2(x1+x2)=﹣1×1=-1.故選B.【點(diǎn)睛】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根與系數(shù)的關(guān)系:若方程兩個(gè)為x1,x2,則x1+x2,x1?x2.8、D【解析】
試題解析:根據(jù)題意得=30%,解得n=30,所以這個(gè)不透明的盒子里大約有30個(gè)除顏色外其他完全相同的小球.故選D.考點(diǎn):利用頻率估計(jì)概率.9、B【解析】試題分析:根據(jù)二次根式的性質(zhì),由此可知2-a≥0,解得a≤2.故選B點(diǎn)睛:此題主要考查了二次根式的性質(zhì),解題關(guān)鍵是明確被開方數(shù)的符號,然后根據(jù)性質(zhì)可求解.10、B【解析】
根據(jù)倒數(shù)的定義,冪的乘方、二次根式的混合運(yùn)算法則以及根的判別式進(jìn)行判斷.【詳解】解:①﹣的倒數(shù)是﹣2,故正確;②(﹣2a2)3=﹣8a6,故錯(cuò)誤;③(-)=﹣2,故錯(cuò)誤;④因?yàn)椤鳎?﹣3)2﹣4×1×1=5>0,所以方程x2﹣3x+1=0有兩個(gè)不等的實(shí)數(shù)根,故正確.故選B.【點(diǎn)睛】考查了倒數(shù)的定義,冪的乘方、二次根式的混合運(yùn)算法則以及根的判別式,屬于比較基礎(chǔ)的題目,熟記計(jì)算法則即可解答.11、A【解析】試題解析:連接OD,∵四邊形ABCO為平行四邊形,∴∠B=∠AOC,∵點(diǎn)A.B.C.D在⊙O上,由圓周角定理得,解得,∵OA=OD,OD=OC,∴∠DAO=∠ODA,∠ODC=∠DCO,故選A.點(diǎn)睛:在同圓或等圓中,同弧或等弧所對的圓周角等于圓心角的一半.12、A【解析】
根據(jù)折疊的性質(zhì)明確對應(yīng)關(guān)系,易得∠A=∠1,DE是△ABC的中位線,所以易得B、D答案正確,D是AB中點(diǎn),所以DB=DA,故C正確.【詳解】根據(jù)題意可知DE是三角形ABC的中位線,所以DE∥BC;∠B+∠1+∠C=180°;∵BD=AD,∴△DBA是等腰三角形.故只有A錯(cuò),BA≠CA.故選A.【點(diǎn)睛】主要考查了三角形的內(nèi)角和外角之間的關(guān)系以及等腰三角形的性質(zhì).還涉及到翻折變換以及中位線定理的運(yùn)用.(1)三角形的外角等于與它不相鄰的兩個(gè)內(nèi)角和.(1)三角形的內(nèi)角和是180度.求角的度數(shù)常常要用到“三角形的內(nèi)角和是180°這一隱含的條件.通過折疊變換考查正多邊形的有關(guān)知識,及學(xué)生的邏輯思維能力.解答此類題最好動手操作.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、a1.【解析】試題分析:根據(jù)同底數(shù)冪的除法底數(shù)不變指數(shù)相減,可得答案.原式=a10-1=a1,故答案為a1.考點(diǎn):同底數(shù)冪的除法.14、a≤1且a≠0【解析】∵關(guān)于x的一元二次方程有實(shí)數(shù)根,∴,解得:,∴a的取值范圍為:且.點(diǎn)睛:解本題時(shí),需注意兩點(diǎn):(1)這是一道關(guān)于“x”的一元二次方程,因此;(2)這道一元二次方程有實(shí)數(shù)根,因此;這個(gè)條件缺一不可,尤其是第一個(gè)條件解題時(shí)很容易忽略.15、.【解析】
作BK∥CF,使得BK=DE=2,作K關(guān)于直線CF的對稱點(diǎn)G交CF于點(diǎn)M,連接BG交CF于D',則,此時(shí)△BD'E'的周長最小,作交CF于點(diǎn)F,可知四邊形為平行四邊形及四邊形為矩形,在中,解直角三角形可知BH長,易得GK長,在Rt△BGK中,可得BG長,表示出△BD'E'的周長等量代換可得其值.【詳解】解:如圖,作BK∥CF,使得BK=DE=2,作K關(guān)于直線CF的對稱點(diǎn)G交CF于點(diǎn)M,連接BG交CF于D',則,此時(shí)△BD'E'的周長最小,作交CF于點(diǎn)F.由作圖知,四邊形為平行四邊形,由對稱可知,即四邊形為矩形在中,在Rt△BGK中,BK=2,GK=6,∴BG2,∴△BDE周長的最小值為BE'+D'E'+BD'=KD'+D'E'+BD'=D'E'+BD'+GD'=D'E'+BG=2+2.故答案為:2+2.【點(diǎn)睛】本題考查了最短距離問題,涉及了軸對稱、矩形及平行四邊形的性質(zhì)、解直角三角形、勾股定理,難度系數(shù)較大,利用兩點(diǎn)之間線段最短及軸對稱添加輔助線是解題的關(guān)鍵.16、B【解析】
利用同時(shí)開放其中的兩個(gè)安全出口,20分鐘所通過的小車的數(shù)量分析對比,能求出結(jié)果.【詳解】同時(shí)開放A、E兩個(gè)安全出口,與同時(shí)開放D、E兩個(gè)安全出口,20分鐘的通過數(shù)量發(fā)現(xiàn)得到D疏散乘客比A快;同理同時(shí)開放BC與CD進(jìn)行對比,可知B疏散乘客比D快;同理同時(shí)開放BC與AB進(jìn)行對比,可知C疏散乘客比A快;同理同時(shí)開放DE與CD進(jìn)行對比,可知E疏散乘客比C快;同理同時(shí)開放AB與AE進(jìn)行對比,可知B疏散乘客比E快;所以B口的速度最快故答案為B.【點(diǎn)睛】本題考查簡單的合理推理,考查推理論證能力等基礎(chǔ)知識,考查運(yùn)用求解能力,考查函數(shù)與方程思想,是基礎(chǔ)題.17、1.【解析】
連接OD,根據(jù)圓的切線定理和等腰三角形的性質(zhì)可得出答案.【詳解】連接OD,則∠ODC=90°,∠COD=70°,∵OA=OD,∴∠ODA=∠A=∠COD=35°,∴∠CDA=∠CDO+∠ODA=90°+35°=1°,故答案為1.考點(diǎn):切線的性質(zhì).18、答案不唯一,如:(﹣1,﹣1),橫坐標(biāo)和縱坐標(biāo)都是負(fù)數(shù)即可.【解析】
讓橫坐標(biāo)、縱坐標(biāo)為負(fù)數(shù)即可.【詳解】在第三象限內(nèi)點(diǎn)的坐標(biāo)為:(﹣1,﹣1)(答案不唯一).故答案為答案不唯一,如:(﹣1,﹣1),橫坐標(biāo)和縱坐標(biāo)都是負(fù)數(shù)即可.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、﹣9<x<1.【解析】
先求每一個(gè)不等式的解集,然后找出它們的公共部分,即可得出答案.【詳解】解不等式1(x﹣1)<2x,得:x<1,解不等式﹣<1,得:x>﹣9,則原不等式組的解集為﹣9<x<1.【點(diǎn)睛】此題考查了解一元一次不等式組,用到的知識點(diǎn)是解一元一次不等式組的步驟,關(guān)鍵是找出兩個(gè)不等式解集的公共部分.20、(1)正方形ABCD的“關(guān)聯(lián)點(diǎn)”為P2,P3;(2)或;(3).【解析】
(1)正方形ABCD的“關(guān)聯(lián)點(diǎn)”中正方形的內(nèi)切圓和外切圓之間(包括兩個(gè)圓上的點(diǎn)),由此畫出圖形即可判斷;(2)因?yàn)镋是正方形ABCD的“關(guān)聯(lián)點(diǎn)”,所以E在正方形ABCD的內(nèi)切圓和外接圓之間(包括兩個(gè)圓上的點(diǎn)),因?yàn)镋在直線上,推出點(diǎn)E在線段FG上,求出點(diǎn)F、G的橫坐標(biāo),再根據(jù)對稱性即可解決問題;(3)因?yàn)榫€段MN上的每一個(gè)點(diǎn)都是正方形ABCD的“關(guān)聯(lián)點(diǎn)”,分兩種情形:①如圖3中,MN與小⊙Q相切于點(diǎn)F,求出此時(shí)點(diǎn)Q的橫坐標(biāo);②M如圖4中,落在大⊙Q上,求出點(diǎn)Q的橫坐標(biāo)即可解決問題;【詳解】(1)由題意正方形ABCD的“關(guān)聯(lián)點(diǎn)”中正方形的內(nèi)切圓和外切圓之間(包括兩個(gè)圓上的點(diǎn)),觀察圖象可知:正方形ABCD的“關(guān)聯(lián)點(diǎn)”為P2,P3;(2)作正方形ABCD的內(nèi)切圓和外接圓,∴OF=1,,.∵E是正方形ABCD的“關(guān)聯(lián)點(diǎn)”,∴E在正方形ABCD的內(nèi)切圓和外接圓之間(包括兩個(gè)圓上的點(diǎn)),∵點(diǎn)E在直線上,∴點(diǎn)E在線段FG上.分別作FF’⊥x軸,GG’⊥x軸,∵OF=1,,∴,.∴.根據(jù)對稱性,可以得出.∴或.(3)∵、N(0,1),∴,ON=1.∴∠OMN=60°.∵線段MN上的每一個(gè)點(diǎn)都是正方形ABCD的“關(guān)聯(lián)點(diǎn)”,①M(fèi)N與小⊙Q相切于點(diǎn)F,如圖3中,∵QF=1,∠OMN=60°,∴.∵,∴.∴.②M落在大⊙Q上,如圖4中,∵,,∴.∴.綜上:.【點(diǎn)睛】本題考查一次函數(shù)綜合題、正方形的性質(zhì)、直線與圓的位置關(guān)系等知識,解題的關(guān)鍵是理解題意,學(xué)會尋找特殊位置解決數(shù)學(xué)問題,屬于中考壓軸題.21、,1.【解析】
原式括號中的兩項(xiàng)通分并利用同分母分式的加法法則計(jì)算,再與括號外的分式通分后利用同分母分式的加法法則計(jì)算,約分得到最簡結(jié)果,將變形為,整體代入計(jì)算即可.【詳解】解:原式∵,∴,∴原式【點(diǎn)睛】本題主要考查分式的化簡求值,解題的關(guān)鍵是掌握分式的混合運(yùn)算順序和運(yùn)算法則.22、原式=【解析】
括號內(nèi)先通分進(jìn)行分式的加減運(yùn)算,然后再進(jìn)行分式的乘除法運(yùn)算,最后將數(shù)個(gè)代入進(jìn)行計(jì)算即可.【詳解】原式===,當(dāng)a=1+,b=1﹣時(shí),原式==.【點(diǎn)睛】本題考查了分式的化簡求值,熟練掌握分式混合運(yùn)算的運(yùn)算順序以及運(yùn)算法則是解題的關(guān)鍵.23、(1)(1,﹣4a);(2)①y=﹣x2+2x+3;②M(,)、N(,);③點(diǎn)Q的坐標(biāo)為(1,﹣4+2)或(1,﹣4﹣2).【解析】分析:(1)將二次函數(shù)的解析式進(jìn)行配方即可得到頂點(diǎn)D的坐標(biāo).(2)①以AD為直徑的圓經(jīng)過點(diǎn)C,即點(diǎn)C在以AD為直徑的圓的圓周上,依據(jù)圓周角定理不難得出△ACD是個(gè)直角三角形,且∠ACD=90°,A點(diǎn)坐標(biāo)可得,而C、D的坐標(biāo)可由a表達(dá)出來,在得出AC、CD、AD的長度表達(dá)式后,依據(jù)勾股定理列等式即可求出a的值.②將△OBE繞平面內(nèi)某一點(diǎn)旋轉(zhuǎn)180°得到△PMN,說明了PM正好和x軸平行,且PM=OB=1,所以求M、N的坐標(biāo)關(guān)鍵是求出點(diǎn)M的坐標(biāo);首先根據(jù)①的函數(shù)解析式設(shè)出M點(diǎn)的坐標(biāo),然后根據(jù)題干條件:BF=2MF作為等量關(guān)系進(jìn)行解答即可.③設(shè)⊙Q與直線CD的切點(diǎn)為G,連接QG,由C、D兩點(diǎn)的坐標(biāo)不難判斷出∠CDQ=45°,那么△QGD為等腰直角三角形,即QD2=2QG2=2QB2,設(shè)出點(diǎn)Q的坐標(biāo),然后用Q點(diǎn)縱坐標(biāo)表達(dá)出QD、QB的長,根據(jù)上面的等式列方程即可求出點(diǎn)Q的坐標(biāo).詳解:(1)∵y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,∴D(1,﹣4a).(2)①∵以AD為直徑的圓經(jīng)過點(diǎn)C,∴△ACD為直角三角形,且∠ACD=90°;由y=ax2﹣2ax﹣3a=a(x﹣3)(x+1)知,A(3,0)、B(﹣1,0)、C(0,﹣3a),則:AC2=9a2+9、CD2=a2+1、AD2=16a2+4由勾股定理得:AC2+CD2=AD2,即:9a2+9+a2+1=16a2+4,化簡,得:a2=1,由a<0,得:a=﹣1,②∵a=﹣1,∴拋物線的解析式:y=﹣x2+2x+3,D(1,4).∵將△OBE繞平面內(nèi)某一點(diǎn)旋轉(zhuǎn)180°得到△PMN,∴PM∥x軸,且PM=OB=1;設(shè)M(x,﹣x2+2x+3),則OF=x,MF=﹣x2+2x+3,BF=OF+OB=x+1;∵BF=2MF,∴x+1=2(﹣x2+2x+3),化簡,得:2x2﹣3x﹣5=0解得:x1=﹣1(舍去)、x2=.∴M(,)、N(,).③設(shè)⊙Q與直線CD的切點(diǎn)為G,連接QG,過C作CH⊥QD于H,如下圖:∵C(0,3)、D(1,4),∴CH=DH=1,即△CHD是等腰直角三角形,∴△QGD也是等腰直角三角形,即:QD2=2QG2;設(shè)Q(1,b),則QD=4﹣b,QG2=QB2=b2+4;得:(4﹣b)2=2(b2+4),化簡,得:b2+8b﹣8=0,解得:b=﹣4±2;即點(diǎn)Q的坐標(biāo)為(1,)或(1,).點(diǎn)睛:此題主要考查了二次函數(shù)解析式的確定、旋轉(zhuǎn)圖形的性質(zhì)、圓周角定理以及直線和圓的位置關(guān)系等重要知識點(diǎn);后兩個(gè)小題較難,最后一題中,通過構(gòu)建等腰直角三角形找出QD和⊙Q半徑間的數(shù)量關(guān)系是解題題目的關(guān)鍵.24、(1)證明見解析;(2)1-π.【解析】
(1)解直角三角形求出BC,根據(jù)勾股定理求出AB,根據(jù)三角形面積公式求出CF,根據(jù)切線的判定得出即可;(2)分別求出△ACB的面積和扇形DCE的面積,即可得出答案.【詳解】(1)過C作CF⊥AB于F.∵在Rt△ABC中,∠C=90°,AC,tanB,∴BC=2,由勾股定理得:AB1.∵△ACB的面積S,∴CF2,∴CF為⊙C的半徑.∵CF⊥AB,∴AB為⊙C的切線;(2)圖中陰影部分的面積=S△ACB﹣S扇形DCE1﹣π.【點(diǎn)睛】本題考查了勾股定理,扇形的面積,解直角三角形,切線的性質(zhì)和判定等知識點(diǎn),能求出CF的長是解答此題的關(guān)鍵.25、(1)(2)證明見解析(3)F在直徑BC下方的圓弧上,且【解析】
(1)由直線l與以BC為直徑的圓O相切于點(diǎn)C,即可得∠BCE=90°,∠BFC=∠CFE=90°,則可證得△CEF∽△BEC,然后根據(jù)相似三角形的對應(yīng)邊成比例,即可求得EF的長;(2)①由∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,根據(jù)同角的余角相等,即可得∠ABF=∠FCD,同理可得∠AFB=∠CFD,則可證得△CDF∽△BAF;②由△CDF∽△BAF與△CEF∽△BCF,根據(jù)相似三角形的對應(yīng)邊成比例,易證得,又由AB=BC,即可證得CD=CE;(3)由CE=CD,可得BC=CD=CE,然后在Rt△BCE中,求得tan∠CBE的值,即可求得∠CBE的度數(shù),則可得F在⊙O的下半圓上,且.【詳解】(1)解:∵直線l與以BC為直徑的圓O相切于點(diǎn)C.∴∠BCE=90°,又∵BC為直徑,∴∠BFC=∠CFE=90°,∵∠FEC=∠CEB,∴△CEF∽△BEC,∴,∵BE=15,CE=9,即:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024購銷合同錦集
- 2024鋼筋采購合同范本
- 2025年度離婚后房產(chǎn)共有權(quán)處理協(xié)議3篇
- 2024消防整改工程環(huán)保合規(guī)性審查及整改協(xié)議3篇
- 2024年高端餐飲經(jīng)營管理轉(zhuǎn)讓合同
- 2025年度生態(tài)農(nóng)業(yè)園區(qū)草坪除草與農(nóng)產(chǎn)品質(zhì)量安全合同3篇
- 2025年度綠色建筑節(jié)能改造補(bǔ)充施工合同范本3篇
- 2024年高端醫(yī)療服務(wù)合同的服務(wù)內(nèi)容
- 2025年度智慧能源管理系統(tǒng)承包經(jīng)營合同范本3篇
- 2024年高校畢業(yè)生就業(yè)協(xié)議
- 2025年中國社區(qū)團(tuán)購行業(yè)發(fā)展環(huán)境、運(yùn)行態(tài)勢及投資前景分析報(bào)告(智研咨詢發(fā)布)
- 國開電大本科《西方經(jīng)濟(jì)學(xué)(本)》網(wǎng)上形考(作業(yè)一至六)試題及答案
- 提高有風(fēng)險(xiǎn)患者預(yù)防跌倒墜床護(hù)理措施落實(shí)率品管圈PDCA案例匯報(bào)
- 建材行業(yè)綠色建筑材料配送方案
- 2024年行政執(zhí)法人員執(zhí)法資格知識考試題庫(附含答案)
- 西那卡塞治療甲旁亢
- 無人駕駛 物流行業(yè)市場調(diào)研分析報(bào)告
- 電力工程施工人員培訓(xùn)方案
- 3-U9C操作培訓(xùn)-MRP基礎(chǔ)
- 8年級上冊(人教版)物理電子教材-初中8~9年級物理電子課本
- 2024至2030年中國銅制裝飾材料行業(yè)投資前景及策略咨詢研究報(bào)告
評論
0/150
提交評論