統(tǒng)計學(xué)導(dǎo)論第二版習(xí)題詳解_第1頁
統(tǒng)計學(xué)導(dǎo)論第二版習(xí)題詳解_第2頁
統(tǒng)計學(xué)導(dǎo)論第二版習(xí)題詳解_第3頁
統(tǒng)計學(xué)導(dǎo)論第二版習(xí)題詳解_第4頁
統(tǒng)計學(xué)導(dǎo)論第二版習(xí)題詳解_第5頁
已閱讀5頁,還剩129頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

word文檔精品文檔分享統(tǒng)計學(xué)導(dǎo)論〔第二版〕習(xí)題詳解第一章一、判斷題一、判斷題1.統(tǒng)計學(xué)是數(shù)學(xué)的一個分支。答:錯。統(tǒng)計學(xué)和數(shù)學(xué)都是研究數(shù)量關(guān)系的,兩者雖然關(guān)系非常密切,但兩個學(xué)科有不同的性質(zhì)特點(diǎn)。數(shù)學(xué)撇開具體的對象,以最一般的形式研究數(shù)量的聯(lián)系和空間形式;而統(tǒng)計學(xué)的數(shù)據(jù)那么總是與客觀的對象聯(lián)系在一起。特別是統(tǒng)計學(xué)中的應(yīng)用統(tǒng)計學(xué)與各不同領(lǐng)域的實(shí)質(zhì)性學(xué)科有著非常密切的聯(lián)系,是有具體對象的方法論。。從研究方法看,數(shù)學(xué)的研究方法主要是邏輯推理和演繹論證的方法,而統(tǒng)計的方法,本質(zhì)上是歸納的方法。統(tǒng)計學(xué)家特別是應(yīng)用統(tǒng)計學(xué)家那么需要深入實(shí)際,進(jìn)展調(diào)查或?qū)嶒?yàn)去取得數(shù)據(jù),研究時不僅要運(yùn)用統(tǒng)計的方法,而且還要掌握某一專門領(lǐng)域的知識,才能得到有意義的成果。從成果評價標(biāo)準(zhǔn)看,數(shù)學(xué)注意方法推導(dǎo)的嚴(yán)謹(jǐn)性和正確性。統(tǒng)計學(xué)那么更加注意方法的適用性和可操作性。2.統(tǒng)計學(xué)是一門獨(dú)立的社會科學(xué)。答:錯。統(tǒng)計學(xué)是跨社會科學(xué)領(lǐng)域和自然科學(xué)領(lǐng)域的多學(xué)科性的科學(xué)。3.統(tǒng)計學(xué)是一門實(shí)質(zhì)性科學(xué)。答:錯。實(shí)質(zhì)性的科學(xué)研究該領(lǐng)域現(xiàn)象的本質(zhì)關(guān)系和變化規(guī)律;而統(tǒng)計學(xué)那么是為研究認(rèn)識這些關(guān)系和規(guī)律提供數(shù)量分析的方法。4.統(tǒng)計學(xué)是一門方法論科學(xué)。答:對。統(tǒng)計學(xué)是有關(guān)如何測定、收集和分析反映客觀現(xiàn)象總體數(shù)量的數(shù)據(jù),以幫助人們正確認(rèn)識客觀世界數(shù)量規(guī)律的方法論科學(xué)。5.描述統(tǒng)計是用文字和圖表對客觀世界進(jìn)展描述。答:錯。描述統(tǒng)計是對采集的數(shù)據(jù)進(jìn)展登記、審核、整理、歸類,在此根底上進(jìn)一步計算出各種能反映總體數(shù)量特征的綜合指標(biāo),并用圖表的形式表示經(jīng)過歸納分析而得到的各種有用信息。描述統(tǒng)計不僅僅使用文字和圖表來描述,更重要的是要利用有關(guān)統(tǒng)計指標(biāo)反映客觀事物的數(shù)量特征。6.對于有限總體不必應(yīng)用推斷統(tǒng)計方法。答:錯。一些有限總體,由于各種原因,并不一定都能采用全面調(diào)查的方法。例如,某一批電視機(jī)是有限總體,要檢驗(yàn)其顯像管的壽命。不可能每一臺都去進(jìn)展觀察和實(shí)驗(yàn),只能應(yīng)用抽樣調(diào)查方法。7.經(jīng)濟(jì)社會統(tǒng)計問題都屬于有限總體的問題。答:錯。不少社會經(jīng)濟(jì)的統(tǒng)計問題屬于無限總體。例如要研究消費(fèi)者的消費(fèi)傾向,消費(fèi)者不僅包括現(xiàn)在的消費(fèi)者而且還包括未來的消費(fèi)者,因而實(shí)際上是一個無限總體。8.理論統(tǒng)計學(xué)與應(yīng)用統(tǒng)計學(xué)是兩類性質(zhì)不同的統(tǒng)計學(xué)。答:對。理論統(tǒng)計具有通用方法論的性質(zhì),而應(yīng)用統(tǒng)計學(xué)那么與各不同領(lǐng)域的實(shí)質(zhì)性學(xué)科word文檔精品文檔分享1word文檔精品文檔分享有著非常密切的聯(lián)系,具有復(fù)合型學(xué)科和邊緣學(xué)科的性質(zhì)。二、單項選擇題社會經(jīng)濟(jì)統(tǒng)計學(xué)的研究對象是〔A〕。A.社會經(jīng)濟(jì)現(xiàn)象的數(shù)量方面B.統(tǒng)計工作C.社會經(jīng)濟(jì)的內(nèi)在規(guī)律D.統(tǒng)計方法2.考察全國的工業(yè)企業(yè)的情況時,以下標(biāo)志中屬于不變標(biāo)志的有〔A〕。A.產(chǎn)業(yè)分類 B.職工人數(shù) C.勞動生產(chǎn)率 D.所有制3.要考察全國居民的人均住房面積,其統(tǒng)計總體是〔A〕。A.全國所有居民戶B.全國的住宅C.各省市自治區(qū)D.某一居民戶最早使用統(tǒng)計學(xué)這一學(xué)術(shù)用語的是〔B〕。A.政治算術(shù)學(xué)派 B.國勢學(xué)派C.社會統(tǒng)計學(xué)派 D.數(shù)理統(tǒng)計學(xué)派三、分析問答題1.試分析以下幾種統(tǒng)計數(shù)據(jù)所采用的計量尺度屬于何種計量尺度:人口、民族、信教人數(shù)、進(jìn)出口總額、經(jīng)濟(jì)增長率。答:定類尺度的數(shù)學(xué)特征是“=〞或“〞,所以只可用來分類,民族就是定類尺度數(shù)據(jù),它可以區(qū)分為漢、藏、回等民族。定序尺度的數(shù)學(xué)特征是“>〞或“<〞,所以它不但可以分類,還可以反映各類的優(yōu)劣和順序,教育程度屬于定序尺度。定距尺度的主要數(shù)學(xué)特征是“+〞或“-〞,它不但可以排序,還可以用確切的數(shù)值反映現(xiàn)象在兩方面的差異,所以,人口數(shù)、信教人數(shù)、進(jìn)出口總額都是定距尺度數(shù)據(jù);定比尺度的主要數(shù)學(xué)特征是 “〞或“〞,它通常都是相對數(shù)或平均數(shù),所以經(jīng)濟(jì)增長率是定比尺度數(shù)據(jù)。2.請舉一個實(shí)例說明品質(zhì)標(biāo)志、數(shù)量標(biāo)志、質(zhì)量指標(biāo)、數(shù)量指標(biāo)之間有怎樣的區(qū)別與聯(lián)系。答:例如考察全國人口的情況,全國所有的人為統(tǒng)計總體,而每個人就是總體單位,每個人都有許多屬性和特征,比方民族、性別、文化程度、年齡、身高、體重等,這些就是標(biāo)志,標(biāo)志可以分為品質(zhì)標(biāo)志和數(shù)量標(biāo)志,性別、民族和文化程度都是品質(zhì)標(biāo)志,年齡、身高、體重等那么是數(shù)量標(biāo)志;而指標(biāo)是說明統(tǒng)計總體數(shù)量特征的,用以說明全國人口的規(guī)模如人口總數(shù)等指標(biāo)就是數(shù)量指標(biāo),而用以說明全國人口某一方面相對水平的相對量指標(biāo)和平均量指標(biāo)如死亡率、出生率等指標(biāo)就是質(zhì)量指標(biāo),質(zhì)量指標(biāo)通常是在數(shù)量指標(biāo)的派生指標(biāo)。3.請舉一個實(shí)例說明統(tǒng)計總體、樣本、單位的含義,并說明三者之間的聯(lián)系。答:例如考察全國居民人均住房情況,全國所有居民構(gòu)成統(tǒng)計總體,每一戶居民是總體單位,抽查其中5000戶,這被調(diào)查的5000戶居民構(gòu)成樣本。word文檔精品文檔分享2word文檔精品文檔分享第二章一、單項選擇題統(tǒng)計調(diào)查對象是〔C〕。A.總體各單位標(biāo)志值B.總體單位C.現(xiàn)象總體D.統(tǒng)計指標(biāo)2.我國統(tǒng)計調(diào)查體系中,作為“主體〞的是〔A〕。A.經(jīng)常性抽樣調(diào)查B.必要的統(tǒng)計報表C.重點(diǎn)調(diào)查及估計推算等D.周期性普查要對某企業(yè)的生產(chǎn)設(shè)備的實(shí)際生產(chǎn)能力進(jìn)展調(diào)查,那么該企業(yè)的“生產(chǎn)設(shè)備〞是〔A〕。A.調(diào)查對象B.調(diào)查單位C.調(diào)查工程D.報告單位二、多項選擇題1.下面哪些現(xiàn)象適宜采用非全面調(diào)查?〔A.B.C.D〕A.企業(yè)經(jīng)營管理中出現(xiàn)的新問題B.某型號日光燈耐用時數(shù)檢查C.平均預(yù)期壽命D.某地區(qū)森林的木材積蓄量抽樣調(diào)查〔A.D〕。A.是一種非全面調(diào)查B.是一種不連續(xù)性的調(diào)查C.可以消除抽樣誤差D.概率抽樣應(yīng)遵循隨機(jī)原那么洛倫茨曲線〔A.B.C〕。A.是一種累計曲線B.可用于反映財富分布的曲線C.用以衡量收入分配公平與否D.越接近對角線基尼系數(shù)越大三、分析判斷題有人說抽樣調(diào)查“以樣本資料推斷總體數(shù)量特征〞肯定比全面調(diào)查的誤差大,你認(rèn)為呢?答:這種說法不對。從理論上分析,統(tǒng)計上的誤差可分為登記性誤差、代表性誤差和推算誤差。無論是全面調(diào)查還是抽樣調(diào)查都會存在登記誤差。而代表性誤差和推算誤差那么是抽樣調(diào)查所固有的。這樣,從外表來看,似乎全面調(diào)查的準(zhǔn)確性一定會高于統(tǒng)計估算。但是,在全面調(diào)查的登記誤差特別是其中的系統(tǒng)誤差相當(dāng)大,而抽樣調(diào)查實(shí)現(xiàn)了科學(xué)化和規(guī)X化的場合,后者的誤差也有可能小于前者。我國農(nóng)產(chǎn)量調(diào)查中,利用抽樣調(diào)查資料估算的糧食產(chǎn)量數(shù)字的可信程度大于全面報表的可信程度,就是一個很有說服力的事例。過去統(tǒng)計報表在我國統(tǒng)計調(diào)查體系中占據(jù)統(tǒng)治地位多年,為什么現(xiàn)在要縮小其使用X圍?答:經(jīng)濟(jì)體制改革以前,統(tǒng)計報表制度是我國統(tǒng)計調(diào)查最主要的方式,它在我國統(tǒng)計調(diào)查體word文檔精品文檔分享3word文檔精品文檔分享系中占據(jù)統(tǒng)治地位多年。近年來,隨著社會主義市場經(jīng)濟(jì)的開展,統(tǒng)計調(diào)查單位變動頻繁,再加上決策主體和利益主體的多層次化,各方面對統(tǒng)計報表數(shù)字真實(shí)性的干擾明顯增加,從而不僅給報表調(diào)查帶來不少困難,同時也影響了統(tǒng)計數(shù)據(jù)的準(zhǔn)確性,統(tǒng)計報表的局限性日漸暴露。所以,為適應(yīng)社會主義市場經(jīng)濟(jì)日新月異開展變化的需要,提高統(tǒng)計數(shù)據(jù)的準(zhǔn)確性和時效性,現(xiàn)行的統(tǒng)計調(diào)查體系以抽樣調(diào)查為主體,也就縮小了統(tǒng)計報表制度的使用X圍。對足球賽觀眾按男、女、老、少分為四組以分析觀眾的構(gòu)造,這種分組方法適宜嗎?答:這種分組方法不適宜。統(tǒng)計分組應(yīng)該遵循“互斥性原那么〞,此題所示的分組方式違反了“互斥性原那么〞,例如,一觀眾是少女,假設(shè)按以上分組,她既可被分在女組,又可被分在少組。以一實(shí)例說明統(tǒng)計分組應(yīng)遵循的原那么。:統(tǒng)計分組必須遵循兩個原那么:窮盡原那么和互斥原那么。窮盡原那么要求總體中的每一個單位都應(yīng)有組可歸,互斥原那么要求總體中的任何一個單位只能歸屬于某一組,而不能同時歸屬于幾個組。例如,把從業(yè)人員按文化程度分組,分為小學(xué)畢業(yè)、中學(xué)畢業(yè)〔含中?!澈痛髮W(xué)畢業(yè)三組,那么,文盲或識字不多的以及大學(xué)以上的學(xué)歷者那么無組可歸,這就不符合窮盡原那么。應(yīng)該分為文盲或識字不多、小學(xué)畢業(yè)、中學(xué)畢業(yè)〔含中?!澈痛髮?、大學(xué)以及研究生畢業(yè)四組,才符合窮盡原那么。又如,商場把鞋子分為男鞋、女鞋和童鞋,這就不符合互斥原那么,因?yàn)橥灿心?、女鞋之分,一雙女童鞋既可歸屬于童鞋組,又可屬于女鞋。可以先按男鞋、女鞋分組,再分別對男鞋、女鞋分為成人鞋和童鞋,形成復(fù)合分組,這才符合互斥原那么。四、計算題抽樣調(diào)查某地區(qū)50戶居民的月人均可支配收入〔單位:元〕數(shù)據(jù)資料如下:8869289999469508641050927949852102792897881610009181040854110090086690595489010069269009998861120893900800938864919863981916818946926895967921978821924651850要求:(可利用Excel)1〕試根據(jù)上述資料編制次〔頻〕數(shù)分布和頻率分布數(shù)列。2〕編制向上和向下累計頻數(shù)、頻率數(shù)列。3〕繪制直方圖、折線圖、曲線圖和向上、向下累計圖。4〕根據(jù)圖形說明居民月人均可支配收入分布的特征。解:〔1〕編制次〔頻〕數(shù)分布和頻率分布數(shù)列。word文檔精品文檔分享4word文檔精品文檔分享次數(shù)分布表居民戶月消費(fèi)品支出額〔元〕次〔頻〕數(shù)頻率〔%〕800以下12800~850488509~001224900~9501836950~10008161000~1050481050~1100121100以上24合計50100.00〔2〕編制向上和向下累計頻數(shù)、頻率數(shù)列?!?〕繪制直方圖、折線圖、曲線圖和向上、向下累計圖。主要操作步驟:①次數(shù)和頻率分布數(shù)列輸入到Excel。②選定分布數(shù)列所在區(qū)域,并進(jìn)入圖表向?qū)?,在向?qū)У?步中選定“簇狀柱形圖〞類型,單擊“完成〞,即可繪制出次數(shù)和頻率的柱形圖。③將頻率柱形圖繪制在次坐標(biāo)軸上,并將其改成折線圖。主要操作步驟:在 “直方圖和折線圖〞根底上,將頻率折線圖改為“平滑線散點(diǎn)圖〞即可。主要操作步驟:①將下表數(shù)據(jù)輸入到Excel。組限向上累計向下累計750050800149850545900173395035151000437105047311004821150500②選定所輸入的數(shù)據(jù),并進(jìn)入圖表向?qū)?,在向?qū)У?步中選定“無數(shù)據(jù)點(diǎn)平滑線散點(diǎn)圖〞類型,單擊“完成〞,即可繪制出累計曲線圖。word文檔精品文檔分享5word文檔精品文檔分享6word文檔精品文檔分享〔4〕曲線圖說明居民月人均可支配收入分布呈鐘型分布。五、案例分析收集有關(guān)統(tǒng)計數(shù)據(jù),對我國近年來居民收入分配的狀況進(jìn)展統(tǒng)計分析。答:略第三章一、單項選擇題1.由變量數(shù)列計算加權(quán)算術(shù)平均數(shù)時,直接表達(dá)權(quán)數(shù)的實(shí)質(zhì)的是〔D〕。A總體單位數(shù)的多少B各組單位數(shù)的多少C各組變量值的大小D各組頻率的大小假設(shè)你正在籌劃一次聚會,想知道該準(zhǔn)備多少瓶飲料,你最希望得到所有客人需要飲料數(shù)量的〔A〕。A均值B中位數(shù)C眾數(shù)D四分位數(shù)3.2004年某地區(qū)甲、乙兩類職工的月平均收入分別為1060和3350元,標(biāo)準(zhǔn)差分別為230和680元,那么職工平均收入的代表性〔B〕。A甲類較大B乙類較大C兩類一樣D在兩類之間缺乏可比性4.假設(shè)學(xué)生測驗(yàn)成績記錄為優(yōu)、良、及格和不及格,為了說明全班同學(xué)測驗(yàn)成績的水平上下,其集中趨勢的測度〔B〕。A可以采用算術(shù)平均數(shù)B可以采用眾數(shù)或中位數(shù)C只能采用眾數(shù)D只能采用四分位數(shù)5.一組數(shù)據(jù)呈微偏分布,且知其均值為510,中位數(shù)為 516,那么可推算眾數(shù)為 (A)。A528B526C513D5126.當(dāng)分布曲線的峰度系數(shù)小于0時,該分布曲線稱為〔C〕。word文檔精品文檔分享7word文檔精品文檔分享A正態(tài)曲線B尖頂曲線C平頂曲線D.U型曲線二、判斷分析題1.有人調(diào)查了 456位足球運(yùn)發(fā)動某年的收入,發(fā)現(xiàn)他們的年收入以24.7萬元為分布中心,但超過24.7萬元的只有121人。試問,這里的24.7萬元指的是哪一種集中趨勢指標(biāo)?你認(rèn)為球員收入分布呈什么形狀?為什么?答:均值。呈右偏分布。由于存在極大值,使均值高于中位數(shù)和眾數(shù),而只有較少的數(shù)據(jù)高于均值。任意一個變量數(shù)列都可以計算其算術(shù)平均數(shù)、中位數(shù)和眾數(shù),并用以衡量變量的集中趨勢嗎?答:不是。每個變量數(shù)列都可以計算其算術(shù)平均數(shù)和中位數(shù),但眾數(shù)的計算和應(yīng)用是有前提條件的,存在極端值時,用算術(shù)平均數(shù)測度數(shù)據(jù)的集中趨勢也有局限性。3.設(shè)一組數(shù)據(jù)的均值為100,標(biāo)準(zhǔn)差系數(shù)為 10%,四階中心矩為 34800,是否可認(rèn)為該組數(shù)據(jù)的分布為正態(tài)分布?m433480030.48,屬于尖頂分布。答:峰度系數(shù)K4(100410%)某段時間內(nèi)三類股票投資基金的年平均收益和標(biāo)準(zhǔn)差數(shù)據(jù)如下表:股票類別平均收益率〔%〕標(biāo)準(zhǔn)差〔%〕A5.632.71B6.944.65C8.239.07根據(jù)上表中平均收益和標(biāo)準(zhǔn)差的信息可以得出什么結(jié)論?假設(shè)你是一個穩(wěn)健型的投資者,你傾向于購置哪一類投資基金?為什么?答:高收益往往伴隨著高風(fēng)險。穩(wěn)健型的投資者應(yīng)傾向于購置A類投資基金,因?yàn)槠錁?biāo)準(zhǔn)差最小,也就是風(fēng)險最小。一般說來,一個城市的住房價格是高度偏態(tài)分布的,為了了解房屋價格變化的走勢,應(yīng)該選擇住房價格的平均數(shù)還是中位數(shù)?如果為了確定交易稅率,估計相應(yīng)稅收總額,又應(yīng)該做何種選擇?答:為了了解房屋價格變化的走勢,宜選擇住房價格的中位數(shù)來觀察,因?yàn)榫凳軜O端值影響;如果為了確定交易稅率,估計相應(yīng)稅收總額,應(yīng)利用均值,因?yàn)榫挡拍芡扑憧傮w有關(guān)的總量。6.某企業(yè)員工的月薪在 1000到4000元之間。現(xiàn)董事會決定給企業(yè)全體員工加薪。如果給每個員工增加200元,那么:1〕全體員工薪金的均值、中位數(shù)和眾數(shù)將分別增加多少?2〕用極差、四分位差、平均差和方差、標(biāo)準(zhǔn)差分別來衡量員工薪金的差異程度,加薪前后各個變異指標(biāo)的數(shù)值會有什么變化?word文檔精品文檔分享8word文檔精品文檔分享〔3〕加薪前后員工薪金分布的偏度和峰度會有無變化?〔4〕如果每個員工加薪的幅度是各自薪金的5%,那么上述三個問題的答案又有什么不同?答:〔1〕都是增加200元?!?〕都不變?!?〕均無變化?!?〕如果每個員工加薪的幅度是各自薪金的5%,那么均值、中位數(shù)和眾數(shù)都將增加5%;極差、四分位差、平均差和標(biāo)準(zhǔn)差也會相應(yīng)增加5%,方差將增加 10.25%;偏度和峰度都不變。三、計算題某公司下屬兩個企業(yè)生產(chǎn)同一種產(chǎn)品,其產(chǎn)量和本錢資料如下:基期報告期單位本錢產(chǎn)量〔噸〕單位本錢產(chǎn)量〔噸〕〔元〕〔元〕甲企業(yè)60012006002400乙企業(yè)70018007001600試分別計算報告期和基期該公司生產(chǎn)這種產(chǎn)品的總平均本錢,并從上述數(shù)據(jù)說明總平均本錢變化的原因。解:基期總平均本錢=60012007001800=66012001800報告期總平均本錢=60024007001600=64024001600總平均本錢下降的原因是該公司產(chǎn)品的生產(chǎn)構(gòu)造發(fā)生了變化,即本錢較低的甲企業(yè)產(chǎn)量占比上升而本錢較高的乙企業(yè)產(chǎn)量占比相應(yīng)下降所致。2.設(shè)某校某專業(yè)的學(xué)生分為甲、乙兩個班,各班學(xué)生的數(shù)學(xué)成績?nèi)缦拢?0,79,48,76,67,58,65,78,64,75,76,78,84,48,25,90,98,70,77,78,68,74,95,85,68,80,92,88,73,65,72,74,99,69,72,74,85,67,33,94,57,60,61,78,83,66,77,82,94,55,76,75,80,6191,74,62,72,90,94,76,83,92,85,94,83,77,82,84,60,60,51,60,78,78,80,70,93,84,81,81,82,85,78,80,72,64,41,75,78,61,42,53,92,75,81,81,62,88,79,98,95,60,71,99,53,54,90,60,93要求:(1)分別計算描述兩個班成績分布特征的各種統(tǒng)計指標(biāo),并進(jìn)展比擬分析;(2)分別繪制兩個班成績分布的箱線圖。解:利用EXCEL的“描述統(tǒng)計〞可得兩個班及全體學(xué)生的成績分布特征的各種統(tǒng)計指標(biāo)如下表〔注:其中方差、標(biāo)準(zhǔn)差、峰度和偏度都是樣本統(tǒng)計量〕。甲班乙班全部平均72.70476.01874.391中位數(shù)74.578.576.5眾數(shù)786078標(biāo)準(zhǔn)差14.68114.25714.496方差215.53203.25210.13峰度1.6636-0.3050.685偏度-0.83-0.59-0.699word文檔精品文檔分享9word文檔精品文檔分享區(qū)域745874最小值254125最大值999999求和392642578183觀測數(shù)5456110根據(jù)第2小題的數(shù)據(jù),試求該專業(yè)全部學(xué)生的總平均成績和方差,并利用此題數(shù)據(jù)驗(yàn)證:分組條件下,總體平均數(shù)與各組平均數(shù)的關(guān)系,以及總體方差與各組方差、組間方差的關(guān)系。n2〔xi解:根據(jù)總體方差的計算公式2x〕i1可得:nword文檔精品文檔分享2甲11423.2593;2211.5418乙5411178.982156199.6247word文檔精品文檔分享全部學(xué)生成績的方差2全部22904.193110208.2199word文檔精品文檔分享k2ni2i1i211.541854199.624756205.4749kni110i1kx)2ni2(xi(72.703774.3909)254(76.017974.3909)256i1Bkni110=2.745i1總體方差〔208.2199〕=組內(nèi)方差平均數(shù)〔205.4749〕+組間方差〔2.745〕4.根據(jù)第2小題的數(shù)據(jù),分別編制兩個班成績的組距數(shù)列〔組距為10〕,然后由組距數(shù)列計算反映數(shù)據(jù)分布特征的各個指標(biāo),并觀察與第2題所得到的計算結(jié)果是否一樣?為什么?解:兩個班成績的組距數(shù)列如下表所示:成績甲班人數(shù)〔人〕乙班人數(shù)〔人〕40以下2040-502250-603460-7013970-80191480-9081590以上712合計5456由上述組距數(shù)列計算的主要分布特征指標(biāo)如下表所示:平均成績方差標(biāo)準(zhǔn)差甲班72.963207.61414.409乙班77.857186.89513.671word文檔精品文檔分享10word文檔精品文檔分享與第2題所得到的兩個班的平均數(shù)都不一樣,這是因?yàn)橛山M距數(shù)列計算時,用組中值代替組平均數(shù),假定組內(nèi)變量值均勻分布或?qū)ΨQ分布,與實(shí)際分布情況有出入,所以計算結(jié)果是近似值。方差和標(biāo)準(zhǔn)差也與第2~3題所得到的計算結(jié)果不一樣,這主要是因?yàn)橛山M距數(shù)列計算時,用組中值代替組內(nèi)各變量值,忽略了組內(nèi)差異,只考慮了組間差異;此外第2題利用EXCEL的“描述統(tǒng)計〞得到的方差、標(biāo)準(zhǔn)差是樣本統(tǒng)計量,與總體方差、標(biāo)準(zhǔn)差的計算公式有差異。5.某商貿(mào)公司從產(chǎn)地收購一批水果,分等級的收購價格和收購金額如下表,試求這批水果的平均收購價格。收購單價水果等級〔元/千克〕收購額〔元〕甲2.0012700乙1.6016640丙1.308320合計——37660k(Xifi)解:收購總額i112700166408320〔元〕X(Xifi)127001664083201.6268收購總量ki1Xi2.001.601.30某中學(xué)校正在準(zhǔn)備給一年級新生定制校服。男生校服分小號、中號和大號三種規(guī)格,分別適合于身高在160cm以下、160~168cm之間和168cm以上的男生。一年級新生中1200名男生,估計他們身高的平均數(shù)為164cm,標(biāo)準(zhǔn)差為4cm。試由此粗略估算三種規(guī)格男生校服應(yīng)該分別準(zhǔn)備多少套〔按每人1套計算〕?解:身高分布通常為鐘形分布,按經(jīng)歷法那么近似估計結(jié)果如下:規(guī)格身高分布X圍比重數(shù)量〔套〕小號160以下0.1585190.2≈190中號160-168均值±1*標(biāo)準(zhǔn)差0.6830819.6≈820大號168以上0.1585190.2≈190合計————1.00001200平均數(shù)和方差一般只能對數(shù)值型變量進(jìn)展計算。但假設(shè)將是非變量〔也稱為是非標(biāo)志〕的兩種情況分別用1和0來表示,那么對是非變量也可以計算其平均數(shù)和對應(yīng)的方差、標(biāo)準(zhǔn)差。試寫出有關(guān)計算公式。解:用1代表“是〞(即具有某種特征),0代表“非〞〔即不具有某種特征〕。設(shè)總次數(shù)為N,1出現(xiàn)次數(shù)為N1,頻率〔N1/N〕記為P。由加權(quán)公式來不難得出:是非變量的均值=P;方差=P(1-P);標(biāo)準(zhǔn)差= P(1P)。word文檔精品文檔分享11word文檔精品文檔分享第四章一、判斷分析題1.設(shè)A,B,C表示三個隨機(jī)事件,將以下事件用A,B,C表示出來。1〕A出現(xiàn),B,C不出現(xiàn);2〕A,B都出現(xiàn),而C不出現(xiàn);3〕所有三個事件都出現(xiàn);4〕三個事件中至少一個出現(xiàn);5〕三個事件中至少二個出現(xiàn);6〕三個事件都不出現(xiàn);7〕恰有一個事件出現(xiàn)。答:〔1〕ABC;〔2〕ABC;〔3〕ABC;〔4〕AB C;〔5〕AB BCCA;〔6〕ABC;7〕ABCABCABC以E表示隨機(jī)試驗(yàn),以表示E的根本領(lǐng)件空間。試描繪以下隨機(jī)試驗(yàn)的根本領(lǐng)件空間和所列事件中所包含的根本領(lǐng)件。〔1〕E:對同一目標(biāo)接連進(jìn)展三次射擊,并觀察是否命中;考慮事件:A={三次射擊恰好命中一次},B={三次射擊最多命中一次}?!?〕E:同時擲兩個骰子觀察點(diǎn)數(shù)和;考慮事件:A={點(diǎn)數(shù)之和為奇數(shù)}。答:〔1〕針對隨機(jī)試驗(yàn):對同一目標(biāo)接連進(jìn)展三次射擊,觀察是否命中①列舉實(shí)驗(yàn)結(jié)果并寫出根本領(lǐng)件空間第一次射擊第二次射擊第三次射擊中中中不中中不中不中中中不中不中中不中不中根本領(lǐng)件空間ΩS={中,中,中}T={中,中,不中}U={中,不中,中}V={中,不中,不中}W={不中,中,中}X={不中,中,不中}Y={不中,不中,中}Z={不中,不中,不中}②事件A:三次射擊恰好命中一次AVXY③事件B:三次射擊最多命中一次B V X YZword文檔精品文檔分享12word文檔精品文檔分享2〕針對隨機(jī)試驗(yàn):同時擲兩顆骰子,觀察點(diǎn)數(shù)和①列舉實(shí)驗(yàn)結(jié)果并寫出根本領(lǐng)件空間點(diǎn)數(shù)和第二顆骰子點(diǎn)數(shù)j〔根本領(lǐng)件空間〕Sij123456第1234567一2345678顆3456789骰45678910子點(diǎn)567891011數(shù)6789101112i②事件A:點(diǎn)數(shù)和為奇數(shù)AS12S14S16S21S23S25S32S34S36S41S43S45S52S54S56S61S63S653.抽查4件產(chǎn)品,設(shè)A表示“至少有一件次品〞,B表示“次品不少于兩件〞。問A,各表示什么事件?答:A表示沒有次品;B表示次品不超過一件。4.在圖書館按書號任選一本書,設(shè)A表示“選的是數(shù)學(xué)書〞,B表示“選的是中文版〞,C表示“選的是1990年以后出版的〞。問:〔1〕ABC表示什么事件?〔2〕CB表示什么意思?〔3〕假設(shè)A=B,是否意味著館中所有數(shù)學(xué)書都不是中文版的?答:1〕ABC表示選的是1990年以前出版的中文版數(shù)學(xué)書;2〕CB表示館中1990年以前出版的書都是中文版的;3〕是。二、計算題向三個相鄰的軍火庫擲一個炸彈。三個軍火庫之間有明顯界限,一個炸彈不會同時炸中兩個或兩個以上的軍火庫,但一個軍火庫爆炸必然連鎖引起另外兩個軍火庫爆炸。假設(shè)投中第一軍火庫的概率是0.025,投中第二軍火庫以及投中第三軍火庫的概率都是0.1。求軍火庫發(fā)生爆炸的概率。word文檔精品文檔分享13word文檔精品文檔分享解:設(shè)A、B、C分別表示炸彈炸中第一軍火庫、第二軍火庫、第三軍火庫這三個事件。于是,P〔A〕=0.025P〔B〕=0.1P〔C〕=0.1又以D表示軍火庫爆炸這一事件,那么有,D=A+B+C其中A、B、C是互不相容事件〔一個炸彈不會同時炸中兩個或兩個以上軍火庫〕P〔D〕=P〔A〕+P〔B〕+P〔C〕=0.025+0.1+0.1=0.225某廠產(chǎn)品中有4%的廢品,100件合格品中有75件一等品。求任取一件產(chǎn)品是一等品的概率。解:①事件的記號和關(guān)系A(chǔ)表示一等品,B表示合格品,C表示廢品。于是有B CA B,從而AABP(B) P(C) 1 P(C)=1-4%=96%word文檔精品文檔分享P(AB)75word文檔精品文檔分享100②應(yīng)用何種公式及理由AAB知,所求之P(A)可以通過P(AB)得到。而P(AB)應(yīng)當(dāng)用乘法公式計算。③計算9675P(A)P(AB)P(B)P(AB)0.721001003.某種動物由出生能活到 20歲的概率是 0.8,由出生能活到 25歲的概率是0.4。問現(xiàn)齡20歲的這種動物活到 25歲的概率為何?解:設(shè)A表示這種動物活到 20歲、B表示這種動物活到25歲?!連 A∴B=AB〔AB〕〔〕0.4=0.5∴P〔B|A〕=P=PB=〔A〕〔A〕0.8PP在記有1,2,3,4,5五個數(shù)字的卡片上,第一次任取一個且不放回,第二次再在余下的四個數(shù)字中任取一個。求:1〕第一次取到奇數(shù)卡片的概率:2〕第二次取到奇數(shù)卡片的概率;3〕兩次都取到奇數(shù)卡片的概率。解:以A表示第一次取到奇數(shù)卡片,B表示第二次取到奇數(shù)卡片?!?〕由古典概型,顯然有word文檔精品文檔分享P(A)35word文檔精品文檔分享〔2〕{第二次取到奇數(shù)卡片 }是{第一次取到奇數(shù)卡片且第二次取到奇數(shù)卡片}與{第一次word文檔精品文檔分享14word文檔精品文檔分享未取到奇數(shù)卡片但第二次取到奇數(shù)卡片}這兩個事件的和事件。即BABAB,并且顯然AB和AB不相容。應(yīng)用不相容事件的加法公式,再應(yīng)用乘法公式,有P(B)P(ABAB)P(AB)P(AB)P(A)P(BA)P(A)P(BA)3223354545〔3〕兩次都取到奇數(shù)卡片,也就是A、B都發(fā)生。由乘法公式,有P(AB)P(A)P(BA)32354105.兩臺車床加工同樣的零件。第一臺出現(xiàn)廢品的概率是0.03,第二臺出現(xiàn)廢品的概率0.02。加工出來的零件放在一起,并且第一臺加工的零件比第二臺加工的零件多一倍。求任意取出的零件是合格品的概率。解:設(shè)B1={第一臺車床的產(chǎn)品};B2={第二臺車床的產(chǎn)品};A={合格品}。那么P〔B1〕=2 P〔B2〕=1 P〔A|B1〕=1-0.03=0.97P〔A|B2〕=1-0.02=0.9833由全概率公式得:P〔A〕=P〔B1〕*P〔A|B1〕+P〔B2〕*P〔A|B2〕=2*0.97+1*0.98=0.973336.有兩個口袋,甲袋中盛有2個白球1個黑球,乙袋中盛有 1個白球2個黑球。由甲袋中任取一球放入乙袋,再從乙袋中取出一球。問取得白球的概率是多少?解:①事件的記號和關(guān)系從甲袋中任取一球放入乙袋,以A表示所取為白球,以A表示所取為黑球;然后從乙袋中任取一球,以B表示所取為白球。于是有P(A)2,P(A)133P(BA)2P(BA)144②應(yīng)用何種公式及理由由于P(A)+P(A)=1,并且P(BA)和P(BA),因而可以用全概率公式計算P(B)。③計算P(B)P(A)P(BA)22115P(A)P(BA)434123在第5題中,如果任意取出的零件是廢品,求它屬于第二臺車床所加工零件的概率。解:設(shè) B1={第一臺車床的產(chǎn)品 };B2={第二臺車床的產(chǎn)品};A={廢品}。word文檔精品文檔分享15word文檔精品文檔分享那么P〔B1〕=2 P〔B2〕=1 P〔A|B1〕=0.03P〔A|B2〕=0.0233P〔B2|A〕=P〔AB2〕=〔2〕〔2〕PB*PAB〔〕〔1〕〔1〕〔2〕〔2〕PAPB*PABPB*PAB1*0.02=0.25=32*0.031*0.0233發(fā)報臺分別以概率0.6及0.4發(fā)出信號“·〞及“—〞由于通訊系統(tǒng)受到干擾,當(dāng)發(fā)出信號“·〞時,收報臺以概率0.8及0.2收到信號“·〞及“—〞;當(dāng)發(fā)出信號“—〞時,收報臺以概率0.9及0.1收到信號“—〞及“·〞。求:1〕當(dāng)收報臺收到信號“·〞時,發(fā)報臺確實(shí)發(fā)出信號“·〞的概率;2〕當(dāng)收報臺收到信號“—〞時,發(fā)報臺確實(shí)發(fā)出信號“—〞的概率。解:①事件的記號和關(guān)系發(fā)報臺發(fā)出信號,以B、B分別表示它發(fā)出的是“?〞、是“-〞;收報臺收到信號,以A、A分別表示它收到的是“?〞、是“-〞。于是有P(B) 0.6,P(B)0.4P(AB)=0.8,P(AB)=0.2P(AB)=0.1,P(AB)=0.9②應(yīng)用何種公式及理由所要求的是條件概率P(BA)和P(BA)。由于已經(jīng)知道了先驗(yàn)概率P(B)和P(B),且P(B)+P(B)=1;還知道了在B和B的條件下發(fā)生A的概率〔從而可求P(BA)〕,以及在B和B的條件下發(fā)生 A的概率〔從而可求P(BA)〕。因此可用貝葉斯公式來計算后驗(yàn)條件概率P(BA)和P(BA)。③計算P(B)P(AB)0.60.812P(BA)P(B)P(AB)0.60.80.40.10.923P(B)P(AB)13P(B)P(AB)0.40.93P(BA)P(B)P(AB)0.40.90.60.20.75P(B)P(AB)4word文檔精品文檔分享16word文檔精品文檔分享設(shè)某運(yùn)發(fā)動投籃投中概率為0.3,試寫出一次投籃投中次數(shù)的概率分布表。假設(shè)該運(yùn)動員在不變的條件下重復(fù)投籃5次,試寫出投中次數(shù)的概率分布表。解:〔1〕一次投籃投中次數(shù)的概率分布表X=x01iP〔X=x〕0.70.3i〔2〕重復(fù)投籃5次,投中次數(shù)的概率分布表X=xi012345P〔X=xi〕0.168070.360150.308700.132300.028350.00243隨機(jī)變量X服從標(biāo)準(zhǔn)正態(tài)分布N〔0,1〕。查表計算:P〔0.3<X<1.8〕;P(–2<X<2);P(–3<X<3);P(–3<X<1.2)。解:P(0.3X1.8)0.3462P(2X2)0.9545P(3X3)0.9973P(3X1.2)0.11375P11.隨機(jī)變量X服從正態(tài)分布N(1720,2822)。試計算:P(1400<X<1600);P(1600<X<1800);X。(2000<)解:P〔1400<X<1600〕=Φ〔16001720〕-Φ〔14001720〕=0.2044282282P〔1600<X<1800〕=Φ〔18001720〕-Φ〔16001720〕=0.2767282282P〔2000<X〕=Φ〔∞〕-Φ〔20001720〕=0.1611282P(1400X1600)P14001720Z16001720=0.2044282282P(1600X1800)16001720Z18001720P=0.2767282282P(2000X)P20001720Z=0.161128212.假設(shè)隨機(jī)變量X服從自由度等于5的2分布,求P(3<X<11)的近似數(shù)值;假設(shè)X服從自由度等于 10的2分布,求P〔3<X<11〕的近似數(shù)值。word文檔精品文檔分享17word文檔精品文檔分享解:P(3X11)0.700.050.65(X~2(5))P(3X11)0.990.300.69(X~2(10))13.假設(shè)隨機(jī)變量X服從自由度為f1=4,f2=5的F-分布,求P(X>11)的近似數(shù)值;假設(shè)X服從自由度為f1=5,f2=6的F-分布,求P(X<5)的近似值。解:當(dāng)f1=4、f2=5時P〔X>11〕=0.01;當(dāng)f1=5、f2=6時P〔X<5〕=1-0.05=0.95word文檔精品文檔分享P(X 11)0.01( X~F(4,5) )word文檔精品文檔分享P(X 5) 1 P(X 5) 1 0.05 0.95( X~F(5,6))14.假設(shè)隨機(jī)變量X服從自由度為10的t–分布,求P(X>3.169);假設(shè)X服從自由度為5的t–分布,求P(X<–2.571)。解:word文檔精品文檔分享P(X 3.169)0.005( X~t(10))word文檔精品文檔分享P(X2.571)0.025( X~t(5) )word文檔精品文檔分享同時擲兩顆骰子一次,求出現(xiàn)點(diǎn)數(shù)和的數(shù)學(xué)期望和方差。解:X=xi2345678910111212345654321P〔X=x〕i3636363636363636363636E〔X〕=xipi=2*1+3*2+4*3+5*4+6*5+7*6+8*5+9*4+10*3+11*2+12*1=252=7363636363636363636363636V〔X〕=xi-EX2pi=272*1+372*2+472*3+572*4+672*5+772*6+872*5+36363636363636972*4+1072*3+1172*2+1272*136363636=210=5.83336word文檔精品文檔分享18word文檔精品文檔分享16.100個產(chǎn)品中有 10個次品?,F(xiàn)從中不放回簡單隨機(jī)抽取5次。求抽到次品數(shù)目的數(shù)學(xué)期望和方差。解:①概率函數(shù)抽到次品的數(shù)目〔記做X〕服從超幾何分布mnmCMCNMPXm(m=0,1,2,?,n)CNn在此題中,N=100,M=10,n=5,代入上式得C10mC905m10!90!5!95!PXmC1005m!10m!5m!85m!100!令m=0,1,2,3,4,5,分別代入上式,算出相應(yīng)的概率,列成以下概率分布表XxiP(Xxi)00.58310.34020.07030.0074近似為05近似為0②數(shù)學(xué)期望和方差根據(jù)上面的分布列,計算 X的數(shù)學(xué)期望和方差Xxip(xi)xip(xi)xi2p(xi)00.5830010.3400.3400.34020.0700.1400.28030.0070.0210.0634近似為0005近似為000合計10.5010.683EXixipxi0.501VXxiExi2pxixi2pxiExi20.6830.50120.432ii17.假設(shè)承受一批產(chǎn)品時,用放回方式進(jìn)展隨機(jī)抽檢,每次抽取1件,抽取次數(shù)是產(chǎn)品word文檔精品文檔分享19word文檔精品文檔分享總數(shù)的一半。假設(shè)不合格產(chǎn)品不超過2%,那么接收。假設(shè)該批產(chǎn)品共100件,其中有 5件不合格品,試計算該批產(chǎn)品經(jīng)檢驗(yàn)被承受的概率。解:C0050+C1149=0.0769+0.2025=0.2794〔〕0.05〔10.05〕500.0510.0550三、證明題1.如果事件A在一次試驗(yàn)中發(fā)生的概率是p,不發(fā)生的概率是q,p+q=1。試證明在n次獨(dú)立重復(fù)試驗(yàn)中該事件出現(xiàn)次數(shù)X的數(shù)學(xué)期望是np,方差是npq。證:nn(n)pkqnkE(X)kP(Xk)kk0k0knn!pkqnk1(kk1)!(nk)!n(n1)pk1q(n1)(k1)npk1k1npn1(n1)ptq(n1)tt0tword文檔精品文檔分享np(pq)n1np1npD(X) E(X2) E(X)2EX(X 1) E(X) E(X)EX(X 1) npn2p22word文檔精品文檔分享nk(k1)(n)pkqnk因EX(X1)k0knn!pkqnkk2(k2)!(nk)!n2n(n 1)p2(n2)ptqn2tt0tword文檔精品文檔分享20word文檔精品文檔分享n(n 1)p2 (pq)n2n(n1)p2于是D(X)nn1)p2npn2p2npnp2npq(2.隨機(jī)變量X1,X2,,Xn獨(dú)立,并且服從同一分布,數(shù)學(xué)期望為,方差2。求這n個隨機(jī)變量的簡單算術(shù)平均數(shù)X的數(shù)學(xué)期望和方差。證:E(X)E1nXi1nEXi1nni1ni1n1n1n12n2V(X)VXin2VXin2nni1i13.隨機(jī)變量X1,X2,,Xn獨(dú)立,并且服從同一分布,數(shù)學(xué)期望為,方差為2。這n個隨機(jī)變量的簡單算術(shù)平均數(shù)為X。求XiX的方差。證:D(XiX)D(Xi1nXj)nj1n1nXj)D(Xi1nnjji(n1)22n12nn2n12n第五章一、選擇題〔可選多項〕1.以下屬于概率抽樣的有〔B、C〕。word文檔精品文檔分享21word文檔精品文檔分享A.網(wǎng)民自由參加的網(wǎng)上調(diào)查B.體育彩票搖獎按隨機(jī)原那么組織的農(nóng)產(chǎn)量調(diào)查D.街頭隨意的采訪2.樣本統(tǒng)計量的標(biāo)準(zhǔn)差與抽樣極限誤差間的關(guān)系是〔D〕。樣本統(tǒng)計量的標(biāo)準(zhǔn)差大于極限誤差樣本統(tǒng)計量的標(biāo)準(zhǔn)差等于極限誤差樣本統(tǒng)計量的標(biāo)準(zhǔn)差小于極限誤差樣本統(tǒng)計量的標(biāo)準(zhǔn)差可能大于、等于或小于極限誤差3.在其它條件不變的情況下,如果重復(fù)抽樣的極限誤差縮小為原來的二分之一,那么樣本容量〔A〕。A.擴(kuò)大為原來的 4倍B.擴(kuò)大為原來的2倍C.縮小為原來的二分之一D.縮小為原來的四分之一4.當(dāng)樣本單位數(shù)充分大時,樣本估計量充分地靠近總體指標(biāo)的可能性趨于1,稱為抽樣估計的〔B〕。A.無偏性 B.一致性C.有效性D.充分性5.抽樣估計的誤差〔 A、C〕。A.是不可防止要產(chǎn)生的B.是可以通過改良調(diào)查方法消除的C.是可以事先計算的D.只有調(diào)查完畢之后才能計算二、計算題1.根據(jù)長期實(shí)驗(yàn),飛機(jī)的最大飛行速度服從正態(tài)分布?,F(xiàn)對某新型飛機(jī)進(jìn)展了15次試飛,測得各次試飛時的最大飛行速度〔米/秒〕為:422.2417.2425.6425.8423.1418.7428.2438.3434.0412.3431.5413.5441.3423.0420.3試對該飛機(jī)最大飛行速度的數(shù)學(xué)期望值進(jìn)展區(qū)間估計〔置信概率0.95〕。解:樣本平均數(shù)X=425SX=S8.488=2.191615(151)t0.05/22.1448word文檔精品文檔分享(n-1)==t/2S=2.1448×2.1916=4.7005nword文檔精品文檔分享所求μ的置信區(qū)間為:425-4.7005<μ<425+4.7005,即〔420.2995,429.7005〕。2.自動車床加工某種零件,零件的長度服從正態(tài)分布?,F(xiàn)在加工過程中抽取16件,測word文檔精品文檔分享22word文檔精品文檔分享得長度值〔單位:毫米〕為:12.1412.1212.0112.2812.0912.1612.0312.0112.0612.1312.0712.1112.0812.0112.0312.06試對該車床加工該種零件長度值的數(shù)學(xué)期望進(jìn)展區(qū)間估計〔置信概率0.95〕。解:因?yàn)榱慵L度服從正態(tài)分布,95%置信區(qū)間為:XSt/2n1,XSt/2n1nn其中X12.08687,s0.07068416,n115,t0.025152.1315即:12.086870.070684162.1315,12.086870.07068416442.131512.04913,12.124543.用同樣方式擲某骰子600次,各種點(diǎn)數(shù)出現(xiàn)頻數(shù)如下:點(diǎn)數(shù)123456合計出現(xiàn)頻數(shù)601001508090120600試對一次投擲中發(fā)生1點(diǎn)的概率進(jìn)展區(qū)間估計〔置信概率0.95〕。解:n=600,p=0.1,nP=60≥5,可以認(rèn)為n充分大,α=0.05,z2z0.0251.96。1.960.10.90.0122600因此,一次投擲中發(fā)生1點(diǎn)的概率的置信區(qū)間為0.1-0.0122<<0.1+0.0122,即〔0.0878,0.1122〕。4.假設(shè)在5.2題中,零件長度的技術(shù)標(biāo)準(zhǔn)為12.10毫米,公差X圍規(guī)定為12.10±0.05毫米。試根據(jù)樣本數(shù)據(jù)對該車床加工該種零件發(fā)生長度不合格的概率進(jìn)展區(qū)間估計〔置信概0.95〕。解:H0:22H1:220,0標(biāo)準(zhǔn)差的2倍=0.05,標(biāo)準(zhǔn)差為0.025,16個數(shù)據(jù)的樣本方差是var(X)=0.00499625在H0:202下word文檔精品文檔分享23word文檔精品文檔分享2n1S22n12~015*var(X)/(0.025^2)=119.91,落在95%置信區(qū)間〔6.26,27.49〕之外。拒絕零假設(shè)。5.某微波爐生產(chǎn)廠家想要了解微波爐進(jìn)入居民家庭生活的深度。他們從某地區(qū)已購置了微波爐的2200個居民戶中用簡單隨機(jī)不復(fù)原抽樣方法以戶為單位抽取了30戶,詢問每戶一個月中使用微波爐的時間。調(diào)查結(jié)果依次為〔分鐘〕:30045090050700400520600340280380800750550201100440460580650430460450400360370560610710200試估計該地區(qū)已購置了微波爐的居民戶平均一戶一個月使用微波爐的時間。解:nn根據(jù)條件可以計算得:yi14820yi28858600i1i1估計量1n1〔分鐘〕yyi=*14820=494ni130估計量的估計方差v()v(y)s2(1n)=1*1537520*(130)=1743.1653nN302922001n21n2其中s2yi2-nyyi-yn-1i1n-1i1=1*885860030*494211537520296.某大學(xué)有本科學(xué)生4000名,從中用簡單隨機(jī)抽樣方法抽出80人,詢問各人是否有上因特網(wǎng)經(jīng)歷。調(diào)查結(jié)果為,其中有8人無此經(jīng)歷。試估計全校本科學(xué)生中無上網(wǎng)經(jīng)歷的學(xué)生所占比率。解:①計算樣本數(shù)據(jù)word文檔精品文檔分享24word文檔精品文檔分享n=80a=8p=a/n=8/80=0.1②估計量?p0.1P③估計量的估計方差p(1p)n0.10.980vp118010.001116nN140007.某中學(xué)教師想要考察該校學(xué)生英語考試成績的離散程度,先隨機(jī)抽取了41位考生,并求出它們成績的標(biāo)準(zhǔn)差S=12.設(shè)全校學(xué)生英語成績服從正態(tài)分布。試根據(jù)上述資料,對全校學(xué)生英語考試成績的離散程度即總體方差進(jìn)展置信度為95%的區(qū)間估計。解:word文檔精品文檔分享(40)0.97524.433,2(40)59.342,置信度為0.95的置信區(qū)間為:0.025word文檔精品文檔分享(n1)S2(n1)S240122401222n1,2n1=,(97.064,235.747)21259.34224.4338.某城市有非農(nóng)業(yè)居民 210萬戶,從中用簡單隨機(jī)抽樣方法抽取出623戶調(diào)查他們住宅裝修的意向。調(diào)查結(jié)果說明,其中有350戶已經(jīng)裝修完畢,近期不再有新的裝修意向;有戶未裝修也不打算裝修;其余的有近期裝修的意向。試估計該城市非農(nóng)業(yè)居民中打算在近期進(jìn)展住宅裝修的居民戶數(shù)。解:①計算樣本數(shù)據(jù)n=623a=623-350-78=195p=a/n=8195/623=0.3130②估計量?A Np 2100000 0.3130657303〔戶〕③估計量的估計方差?2p(1p)n20.3130(10.3130)6231524124413vANn12100000623111N21000009.一個市場分析人員想了解某一地區(qū)看過某一電視廣告的家庭所占的比率。該地區(qū)共有居民1500戶,分析人員希望以95%的置信度對總體比率進(jìn)展估計,并要求估計的誤差不超過5個百分點(diǎn)。另外,根據(jù)先前所做的一個調(diào)查,有25%的家庭看過該廣告。試根據(jù)上述資料,計算要進(jìn)展總體比率的區(qū)間估計,應(yīng)當(dāng)抽取的樣本單位數(shù)。解:Nz2P1P15001.9620.25(10.25)n22z2P1P15000.0521.9620.25(10.25)NP2word文檔精品文檔分享25word文檔精品文檔分享241.695應(yīng)抽取242戶進(jìn)展調(diào)查。第六章一、單項選擇題某種電子元件的使用者要求,一批元件的廢品率不能超過2‰,否那么拒收。1.使用者在決定是否接收而進(jìn)展抽樣檢驗(yàn)時,提出的原假設(shè)是〔B〕。0B.0A.H:P≥2‰H:P≤2‰C.0:=2‰D.其他HP2.對上述檢驗(yàn)問題,標(biāo)準(zhǔn)正態(tài)檢驗(yàn)統(tǒng)計量的取值區(qū)域分成拒絕域和承受域兩局部。拒絕域位于承受域之〔B〕。A.左側(cè)B.右側(cè)C.兩側(cè)D.前三種可能性都存在3.在上述檢驗(yàn)中,0.05顯著性水平對應(yīng)的標(biāo)準(zhǔn)正態(tài)分布臨界值是〔A〕。A.1.645B.±1.96C.-1.645D.±1.6454.假設(shè)算得檢驗(yàn)統(tǒng)計量的樣本值為1.50,電子元件的實(shí)際廢品率是3.5‰,那么會出現(xiàn)-D〕。A.承受了正確的假設(shè)B.拒絕了錯誤的假設(shè)C.棄真錯誤D.取偽錯誤5.使用者偏重于擔(dān)憂出現(xiàn)取偽錯誤而造成的損失。那么他寧可把顯著性水平定得〔A〕。A.大B.小C.大或小都可以D.先決條件缺乏,無法決定二、問答題1.某縣要了解該縣小學(xué)六年級學(xué)生語文理解程度是否到達(dá)及格水平(60分)。為此,從全體六年級學(xué)生中用簡單隨機(jī)放還抽樣方法抽取了400人進(jìn)展測試,得到平均成績61.6分,標(biāo)準(zhǔn)差14.4分。要根據(jù)樣本數(shù)據(jù)對總體參數(shù)的論斷值〔語文理解程度的期望值60分〕作顯著性檢驗(yàn),顯著水平先后按α=0.05和α=0.01考慮。請就上面的工作任務(wù)答復(fù)以下問題:指出由樣本數(shù)據(jù)觀測到何種差異;指出出現(xiàn)這種差異的兩種可能的原因;針對這兩種可能的原因提出相應(yīng)的兩種假設(shè)(原假設(shè)和備擇假設(shè)),指出所提出的假設(shè)對應(yīng)著單側(cè)檢驗(yàn)還是雙側(cè)檢驗(yàn),說明為什么要用單側(cè)檢驗(yàn)或者雙側(cè)檢驗(yàn);(4)仿照式(6.7)構(gòu)造檢驗(yàn)統(tǒng)計量 (如在那里說明過的:這個檢驗(yàn)統(tǒng)計量服從t–分布。不過,由于我們在這里所使用的是一個400人的足夠大的樣本,因而可以用標(biāo)準(zhǔn)正態(tài)分布作為t–分布的近似〕;word文檔精品文檔分享26word文檔精品文檔分享計算檢驗(yàn)統(tǒng)計量的樣本值;根據(jù)上述樣本值查表確定觀測到的顯著性水平;(7)用觀測到的顯著性水平與檢驗(yàn)所用的顯著性水平標(biāo)準(zhǔn)比擬(注意:如果是單側(cè)檢驗(yàn),這個標(biāo)準(zhǔn)用值,如果是雙側(cè)檢驗(yàn),這個標(biāo)準(zhǔn)用/2值),并說明,通過比擬,你是否認(rèn)為得到了足以反對“觀測到的差異純屬時機(jī)變異〞這一論斷(或是足以反對原假設(shè))的足夠的證據(jù)?為什么?(8)根據(jù)提出的顯著性水平建立檢驗(yàn)規(guī)那么,然后用檢驗(yàn)統(tǒng)計量的樣本值與檢驗(yàn)規(guī)那么比擬,重新答復(fù)上條的問題;根據(jù)上面所做的工作,針對此題的研究任務(wù)給出結(jié)論性的表述。答:1〕由樣本數(shù)據(jù)觀察到的差異樣本平均數(shù) 61.6分,不同于對總體平均值的猜測〔60分〕?!?〕出現(xiàn)這種差異的兩種可能的原因第一種可能:總體平均值確實(shí)為60分,樣本平均數(shù)與 60分的差異純屬于抽樣所產(chǎn)生的時機(jī)變異。第二種可能:總體平均值不是60分,樣本平均數(shù)與 60分的差異反映了總體平均值不同60分的這種真實(shí)存在的差異。3〕建立假設(shè)①假設(shè)想了解學(xué)生的語文理解程度是否為60分〔后來通知學(xué)生改為這樣寫〕H0:60等價于真實(shí)情況為第一種情況H1:60等價于真實(shí)情況為第二種情況上述一組假設(shè)對應(yīng)著雙尾檢驗(yàn)。用雙尾檢驗(yàn)的理由是:我們所關(guān)心的僅僅是,是否等于 60〔將=60設(shè)為原假設(shè)〕。假設(shè)檢驗(yàn)統(tǒng)計量的樣本值落在檢驗(yàn)統(tǒng)計量的概率分布曲線的左尾部〔這意味著<60〕或右尾部〔這意味著>60〕,都屬于我們所關(guān)心的情況的對立情況,都需要拒絕原假設(shè)。因而要把拒絕域同時放在左、右兩個尾部,即,進(jìn)展雙尾檢驗(yàn)。②假設(shè)想了解學(xué)生的語文理解程度是否到達(dá)或超過 60分〔教材中原來只寫“是否到達(dá)〞,在理解上容易產(chǎn)生歧義,應(yīng)加上“或超過〞〕word文檔精品文檔分享H0:60H1:60其中的等于 60等價于真實(shí)情況為第一種情況,其中的大于60等價于真實(shí)情況為第二種情況等價于真實(shí)情況為第二種情況word文檔精品文檔分享上述一組假設(shè)對應(yīng)著左單尾檢驗(yàn)。用左單尾檢驗(yàn)的理由是:我們所關(guān)心的是,是否大于或等于 60〔將≥60設(shè)為原假設(shè)〕。假設(shè)檢驗(yàn)統(tǒng)計量的樣本值落在檢驗(yàn)統(tǒng)計量的概率分布曲線的左尾部〔這意味著<60〕,這屬于我們所關(guān)心的情況的對立情況,需要拒絕原假設(shè);至于檢驗(yàn)統(tǒng)計量的樣本值落在右尾部〔這意味著>60〕時,這屬于我們所關(guān)心的情況,不需要拒絕原假設(shè)。因而只把拒絕域word文檔精品文檔分享27word文檔精品文檔分享放在左尾部,即,進(jìn)展左單尾檢驗(yàn)?!?〕構(gòu)造檢驗(yàn)統(tǒng)計量在原假設(shè)H0:60成立的條件下,有以下檢驗(yàn)統(tǒng)計量服從自由度為n–1=400–1的分布。由于自由度相當(dāng)大,故這個分布同標(biāo)準(zhǔn)正態(tài)分布非常接近。y601)t~t(400sn〔5〕計算檢驗(yàn)統(tǒng)計量的樣本值n=400y=61.6s=14.4y6061.6602.22t14.4sn400〔6〕觀察到的顯著水平〔P-值〕查標(biāo)準(zhǔn)正態(tài)分布表,z=2.22時陰影面積值為0.4868。故右尾P-值=P(2.22<z<∞)=0.5–0.4868=0.0132左尾P-值=P(2.22>z>–∞)=0.5+0.4868=0.9868〔7〕用P-值檢驗(yàn)規(guī)那么做檢驗(yàn)①學(xué)生的語文理解程度是否為60分〔H0:=60;H1:≠60〕——雙尾檢驗(yàn)ⅰ〕假設(shè)規(guī)定=0.05檢驗(yàn)用的顯著水平標(biāo)準(zhǔn)為/2=0.05/2=0.025由于右尾P-值=0.0132<0.025,故拒絕原假設(shè)。ⅱ〕假設(shè)規(guī)定=0.01檢驗(yàn)用的顯著水平標(biāo)準(zhǔn)為/2=0.01/2=0.005由于右尾P-值=0.0132>0.025,故不能拒絕原假設(shè)。②學(xué)生的語文理解程度是否到達(dá)或超過60分〔H0:≥60;H1:<60〕——左單尾檢驗(yàn)ⅰ〕假設(shè)規(guī)定=0.05檢驗(yàn)用的顯著水平標(biāo)準(zhǔn)為=0.05由于左尾P-值=0.9868>0.05,故不能拒絕原假設(shè)。ⅱ〕假設(shè)規(guī)定=0.01檢驗(yàn)用的顯著水平標(biāo)準(zhǔn)為=0.01由于左尾P-值=0.9868>0.01,故不能拒絕原假設(shè)?!?〕用臨界值值檢驗(yàn)規(guī)那么做檢驗(yàn)①學(xué)生的語文理解程度是否為60分〔H0:=60;H1:≠60〕——雙尾檢驗(yàn)ⅰ〕假設(shè)規(guī)定=0.05查標(biāo)準(zhǔn)正態(tài)分布表,z/2=z0.05/2=z0.025=1.96,故,拒絕域?yàn)?1.96和1.96,,承受域?yàn)?.96,1.96。由于z=2.22>1.96,檢驗(yàn)統(tǒng)計量的樣本值落在拒絕域,故拒絕原假設(shè)。ⅱ〕假設(shè)規(guī)定=0.01word文檔精品文檔分享28word文檔精品文檔分享查標(biāo)準(zhǔn)正態(tài)分布表,z/2=0.01/20.005,故,拒絕域?yàn)?2.575和z=z=2.5752.575,,承受域?yàn)?.575,2.575。由于z=2.22<2.575,檢驗(yàn)統(tǒng)計量的樣本值落在承受域,故不能拒絕原假設(shè)。②學(xué)生的語文理解程度是否到達(dá)或超過60分〔H0:≥60;H1:<60〕——左單尾檢驗(yàn)ⅰ〕假設(shè)規(guī)定=0.05查標(biāo)準(zhǔn)正態(tài)分布表,在左尾部有z=z0.05=–1.645,故,拒絕域?yàn)?1.645,承受域?yàn)?.645,。由于z=2.22>–1.645,檢驗(yàn)統(tǒng)計量的樣本值落在承受域,故不能拒絕原假設(shè)。ⅱ〕假設(shè)規(guī)定=0.01查標(biāo)準(zhǔn)正態(tài)分布表,在左尾部有z =z0.01=–2.325,故,拒絕域?yàn)?2.325,承受域?yàn)?.325,。由于z=2.22>–2.325,檢驗(yàn)統(tǒng)計量的樣本值落在承受域,故不能拒絕原假設(shè)。9〕檢驗(yàn)結(jié)論①學(xué)生的語文理解程度是否為60分ⅰ〕假設(shè)規(guī)定=0.05樣本數(shù)據(jù)顯著地說明,學(xué)生的語文理解程度并非恰好為60分。上述結(jié)論的雙尾顯著水平為0.05。ⅱ〕假設(shè)規(guī)定=0.01樣本數(shù)據(jù)提供的證據(jù)缺乏以推翻學(xué)生的語文理解程度恰好為60分的假設(shè),也就是說,學(xué)生的語文理解程度有可能恰好為60分。上述結(jié)論的雙尾顯著水平為0.01。②學(xué)生的語文理解程度是否到達(dá)或超過 60分ⅰ〕假設(shè)規(guī)定=0.05樣本數(shù)據(jù)提供的證據(jù)幾乎完全沒有理由推翻學(xué)生的語文理解程度到達(dá)或超過60分的假設(shè),也就是說,可以認(rèn)為學(xué)生的語文理解程度到達(dá)或超過了60分。上述結(jié)論的單尾顯著水平為0.05。ⅱ〕假設(shè)規(guī)定=0.01樣本數(shù)據(jù)提供的證據(jù)幾乎完全沒有理由推翻學(xué)生的語文理解程度到達(dá)或超過60分的假設(shè),也就是說,可以認(rèn)為學(xué)生的語文理解程度到達(dá)或超過了60分。上述結(jié)論的單尾顯著水平為0.01。2.是否+=1?〔這里的是犯棄真錯誤的概率,是犯取偽錯誤的概率〕請說明為什么是或?yàn)槭裁床皇牵看穑菏窃贖0成立的總體中檢驗(yàn)統(tǒng)計量分布的概率密度曲線屬于拒絕域的尾部〔一個或兩個〕面積;是H0不成立的另外某個總體中與前述檢驗(yàn)統(tǒng)計量相對應(yīng)的另外一個統(tǒng)計量分布的概率密度曲線伸入承受域的尾部面積。由于和二者分別屬于兩個概率密度曲線,因此不會存在二者之和等于1的必然規(guī)律。word文檔精品文檔分享29word文檔精品文檔分享人們熟知的必然關(guān)系是:在H0成立的總體的檢驗(yàn)統(tǒng)計量分布的概率密度曲線下,有+1–〕=1。這里,和〔1–〕是上述同一概率密度曲線下分別屬于拒絕域和承受域的兩個局部的面積。〔說明:拒絕域和承受域是實(shí)數(shù)軸的兩個局部,而不是概率密度曲線下的這一局部面積或那一局部面積〕據(jù)一個汽車制造廠家稱,某種新型小汽車耗用每加侖汽油至少能行駛25公里,一個消費(fèi)者研究小組對此感興趣并進(jìn)展檢驗(yàn)。檢驗(yàn)時的前提條件是生產(chǎn)此種小汽車的單位燃料行駛里程技術(shù)性能指標(biāo)服從正態(tài)分布,總體方差為4。試答復(fù)以下問題:〔1〕對于由16輛小汽車所組成的一個簡單隨機(jī)樣本,取顯著性水平為0.01,那么檢驗(yàn)中根據(jù)x來確定是否拒絕制造家的宣稱時,其依據(jù)是什么〔即,檢驗(yàn)規(guī)那么是什么〕?〔2〕按上述檢驗(yàn)規(guī)那么,當(dāng)樣本均值為每加侖23、24、25.5公里時,犯第一類錯誤的概率是多少?答:〔1〕拒絕域( ,2.33];〔2〕樣本均值為 23,24,25.5時,犯第一類錯誤的概率都是0.01。三、計算題1.一臺自動機(jī)床加工零件的直徑X服從正態(tài)分布,加工要求為E(X)=5cm?,F(xiàn)從一天的產(chǎn)品中抽取50個,分別測量直徑后算得x 4.8cm,標(biāo)準(zhǔn)差 0.6cm。試在顯著性水平0.05的要求下檢驗(yàn)這天的產(chǎn)品直徑平均值是否處在控制狀態(tài)〔用臨界值規(guī)那么〕?解:〔1〕提出假設(shè)H0:5H1:52〕構(gòu)造檢驗(yàn)統(tǒng)計量并計算樣本觀測值H0:5成立條件下:Zx4.852.357s20.62503〕確定臨界值和拒絕域Z0.0251.96∴拒絕域?yàn)?1.961.96,〔4〕做出檢驗(yàn)決策∵Z2.357Z0.0251.96word文檔精品文檔分享30word文檔精品文檔分享檢驗(yàn)統(tǒng)計量的樣本觀測值落在拒絕域。∴拒絕原假設(shè)H0,承受H1假設(shè),認(rèn)為生產(chǎn)控制水平不正常。2.初婚年齡服從正態(tài)分布。根據(jù)9個人的調(diào)查結(jié)果,樣本均值x23.5歲,樣本標(biāo)準(zhǔn)差〔以 9-1作為分母計算〕 s3歲。問是否可以認(rèn)為該地區(qū)初婚年齡數(shù)學(xué)期望值已經(jīng)超20歲〔0.05,用臨界值規(guī)那么〕?解:〔1〕提出假設(shè)H0:20H1:202〕構(gòu)造檢驗(yàn)統(tǒng)計量并計算樣本觀測值H0:20成立條件下x23.520t3.5s232n9〔3〕確定臨界值和拒絕域t0.0(58)1.86拒絕域?yàn)?.86,〔4〕做出檢驗(yàn)決策∵t3.51.86檢驗(yàn)統(tǒng)計量的樣本觀測值落入拒絕域∴拒絕H0,承受H1,即可以認(rèn)為該地區(qū)初婚年齡數(shù)學(xué)期望值已經(jīng)超過20歲。3.從某縣小學(xué)六年級男學(xué)生中用簡單隨機(jī)抽樣方式抽取400名,測量他們的體重,算得平均值為61.6公斤,標(biāo)準(zhǔn)差是14.4公斤。如果不知六年級男生體重隨機(jī)變量服從何種分布,可否用上述樣本均值猜測該隨機(jī)變量的數(shù)學(xué)期望值為60公斤?按顯著性水平0.05和0.01分別進(jìn)展檢驗(yàn)〔用臨界值規(guī)那么〕。解:0.05時〔1〕提出假設(shè)H0:60H1:602〕構(gòu)造檢驗(yàn)統(tǒng)計量并計算樣本觀測值H0:60成立條件下:word文檔精品文檔分享31word文檔精品文檔分享x61.660Z2.222s214.424003〕確定臨界值和拒絕域Z0.0251.96∴拒絕域?yàn)?1.961.96,〔4〕做出檢驗(yàn)決策∵Z2.222Z0.0251.96檢驗(yàn)統(tǒng)計量的樣本觀測值落在拒絕域?!嗑芙^原假設(shè)H0,承受H1,認(rèn)為該縣六年級男生體重的數(shù)學(xué)期望不等于60公斤。0.01時〔1〕提出假設(shè)H0:60H1:60〔2〕構(gòu)造檢驗(yàn)統(tǒng)計量并計算樣本觀測值在H0:60成立條件下:Zx61.6602.222s214.424003〕確定臨界值和拒絕域Z0.005 2.575∴拒絕域?yàn)?2.5752.575,〔4〕做出檢驗(yàn)決策∵Z2.222Z0.0052.575檢驗(yàn)統(tǒng)計量的樣本觀測值落在承受域。∴不能拒絕H0,即沒有顯著證據(jù)說明該縣六年級男生體重的數(shù)學(xué)期望不等于60公斤。某公司負(fù)責(zé)人發(fā)現(xiàn)開出去的發(fā)票有大量筆誤,而且斷定這些發(fā)票中,有筆誤的發(fā)票占20%以上。隨機(jī)抽取 400X發(fā)票,檢查后發(fā)現(xiàn)其中有筆誤的占18%,這是否可以證明負(fù)責(zé)人的判斷正確? (0.05,用臨界值規(guī)那么 )解:word文檔精品文檔分享32word文檔精品文檔分享〔1〕提出假設(shè)H0:20%H1:20%2〕構(gòu)造檢驗(yàn)統(tǒng)計量并計算樣本觀測值H0成立條件下:p18%20%Z)20%1(180%n400〔3〕確定臨界值和拒絕域Z0.051.645拒絕域?yàn)?.645,)4〕做出檢驗(yàn)決策Z11.645檢驗(yàn)統(tǒng)計量的樣本觀測值落在承受域∴承受H0,即不能證明負(fù)責(zé)人的判斷正確。5.從某地區(qū)勞動者有限總體中用簡單隨機(jī)放回的方式抽取一個4900人的樣本,其中具有大學(xué)畢業(yè)文化程度的為600人。我們猜測,在該地區(qū)勞動者隨機(jī)試驗(yàn)中任意一人具有大學(xué)畢業(yè)文化程度的概率是11%。要求檢驗(yàn)上述猜測〔=0.05,用臨界值規(guī)那么〕。解:〔1〕提出假設(shè)H0:11%H1:11%2〕構(gòu)造檢驗(yàn)統(tǒng)計量并計算樣本觀測值H0:11%成立條件下:樣本比例60012.2%4900p0.1220.11Z0.112.6810.89n4900〔3〕確定臨界值和拒絕域word文檔精品文檔分享33word文檔精品文檔分享Z0.0251.96∴拒絕域?yàn)?1.961.96,〔4〕做出檢驗(yàn)決策∵Z 2.68 Z0.0251.96檢驗(yàn)統(tǒng)計量的樣本觀測值落在拒絕域。∴拒絕原假設(shè)H0,承受H1假設(shè),即能夠推翻所作的猜測。6.從某市已辦理購房貸款的全體居民中用簡單隨機(jī)不放回方式抽取了342戶,其中,月收入5000元以下的有137戶,戶均借款額7.4635萬元,各戶借款額之間的方差24.999;月收入5000元及以上的有205戶,戶借款額8.9756萬元,各戶借款額之間的方差28.541??梢姡谏暾堎J款的居民中,收入較高者,申請數(shù)額也較大。試問,收入水平不同的居民之間申請貸款水平的這種差異是一種必然規(guī)律,還是純屬偶然?(0.05,用P-值規(guī)那么和臨界值規(guī)那么)解:n1137;n2205;X7.4635;Y8.9756;S1224.999;S2228.5411〕H0和H122:22H0:12,H112檢驗(yàn)統(tǒng)計量:S12/S2212/22~Fn11,n21由于24.999/28.541=0.8758978落在95%置信區(qū)間〔0.7314319,1.354116〕之內(nèi)。不能拒絕零假設(shè)?!?〕假設(shè)兩個總體方差未知,但相等。H0:12;H1:12在H0下,有XY12~tn1n2211Swn2n1其中2n1S2n1S2Sw1122n1n22word文檔精品文檔分享34word文檔精品文檔分享136 24.999 20428.5412047.46358.975627.1242word文檔精品文檔分享2.6310321127.1242137 205單邊 p-值:pt2.631032,3400.004450087小于0.05,即落在單邊拒絕域1.649348之內(nèi)。拒絕H0〔不屬偶然〕。7.用不放回簡單隨機(jī)抽樣方法分別從甲、乙二地各抽取200名六年級學(xué)生進(jìn)展數(shù)學(xué)測試,平均成績分別為62分、67分,標(biāo)準(zhǔn)差分別為 25分、20分,試以0.05的顯著水平檢驗(yàn)兩地六年級數(shù)學(xué)教學(xué)水平是否顯著地有差異。解:〔1〕提出假設(shè)word文檔精品文檔分享H0:H1:212word文檔精品文檔分享2〕構(gòu)造檢驗(yàn)統(tǒng)計量并計算樣本觀測值H0成立條件下:Zy1y26762s12s222.209252202nn20020012〔3〕確定臨界值和拒絕域Z0.0251.96∴拒絕域?yàn)?1.961.96,〔4〕做出檢驗(yàn)決策∵Z2.209Z0.0251.96檢驗(yàn)統(tǒng)計量的樣本觀測值落在拒絕域?!嗑芙^原假設(shè)H0,承受H1,即兩地的教育水平有差異。8.從成年居民有限總體中簡單隨機(jī)不放回地抽取228人,經(jīng)調(diào)查登記知其中男性100人,女性128人。就企業(yè)的促銷活動〔如折扣銷售,抽獎銷售,買幾贈幾,等等〕是否會激發(fā)本人購置欲望這一問題請他〔她〕們發(fā)表意見。男性中有40%的人、女性中有43%的人回答說促銷活動對自己影響不大或沒有影響。試問,促銷活動對不同性別的人購置欲望的影響word文檔精品文檔分享35word文檔精品文檔分享是否有差異?(0.10,用臨界值規(guī)那么)解:H0:男女無差異H1:男女有差異p?10.4,n1100,p?20.43,n1128兩個比例的差的??-0.03,p1-p2|p?1-p?2|0.03????0.1698692<1.960.1766065p1(1p1)p2(1p2)n1n2不能拒絕H0。9.從甲、乙兩地區(qū)居民中用不放回簡單隨機(jī)抽樣方法以戶為單位從甲地抽取400戶,從乙地抽取600戶居民,詢問對某電視節(jié)目的態(tài)度。詢問結(jié)果,表示喜歡的分別為40戶、30戶。試以單側(cè) 0.05〔雙側(cè)0.10〕的顯著水平檢驗(yàn)甲、乙兩地區(qū)居民對該電視節(jié)目的偏好是否顯著地有差異。(用臨界值規(guī)那么 )解:〔1〕提出假設(shè)H0:12H1:122〕構(gòu)造檢驗(yàn)統(tǒng)計量并計算樣本觀測值H0成立條件下:n11n224000.16000.050.07n1n2400600Z210.050.13.0361110.07*0.93(11)n1n2400600〔3〕確定臨界值和拒絕域Z0.05 1.645∴拒絕域?yàn)?1.6451.645,〔4〕做出檢驗(yàn)決策∵Z3.036 Z0.051.645檢驗(yàn)統(tǒng)計量的樣本觀測值落在拒絕域。word文檔精品文檔分享36word文檔精品文檔分享∴拒絕原假設(shè)H0,承受H1,即甲乙兩地居民對該電視節(jié)目的偏好有差異。某企業(yè)為了擴(kuò)大市場占有率,為開展產(chǎn)品促銷活動,擬研究三種廣告宣傳形式即街頭標(biāo)牌廣告、公交車廣告和隨報刊郵遞廣告對促銷的效果,為此選擇了三個人口規(guī)模和經(jīng)濟(jì)開展水平以及該企業(yè)產(chǎn)品過去的銷售量類似的地區(qū),然后隨機(jī)地將三種廣告宣傳形式分別安排在其中一個地區(qū)進(jìn)展試驗(yàn),共試驗(yàn)了6周,各周銷售量如下表。各種廣告宣傳方式的效果是否顯著地有差異?(0.05,用P-值規(guī)那么和臨界值規(guī)那么)三種廣告宣傳方式的銷售量單位:箱地區(qū)和廣告方式觀測序號(周)123456甲地區(qū):街頭標(biāo)牌廣告535266625158乙地區(qū):公交車廣告614655495456丙地區(qū):隨報刊郵遞廣告504045554042解:將對街頭標(biāo)牌廣告宣傳效果〔銷售量〕觀測結(jié)果Y1的數(shù)學(xué)期望值E(Y1)記為1,將對公交車廣告宣傳效果〔銷售量〕觀測結(jié)果Y2的數(shù)學(xué)期望值E(Y2)記為2,將對隨報刊郵遞廣告宣傳效果〔銷售量〕觀測結(jié)果Y3的數(shù)學(xué)期望值E(Y3)記為3。首先計算樣本數(shù)據(jù)〔樣本內(nèi)數(shù)據(jù)順序號記作j〕樣本量nininiyi2組號i廣告方式niyijyij2yiyi2j1j11街頭標(biāo)牌廣告63421967857.003249.0019494.002公交車廣告63211731553.502862.2517173.503隨報刊郵遞廣告62721251445.332055.1112330.67合計——1893549507————48998.17mnni18i1組數(shù)m3y1mniyij93551.94ni1ji18mni2mniyi2ny251.942SSRyiy48998.1718438.43i1j1i1mni2mnimSSEyijyiyij2niyi24950748998.17508.83i1j1i1j1i1下面進(jìn)展檢驗(yàn)①建立假設(shè)word文檔精品文檔分享37word文檔精品文檔分享H0: 123H1:1、 2、 3不全相等②構(gòu)造檢驗(yàn)統(tǒng)計量并計算檢驗(yàn)統(tǒng)計量的樣本值假假設(shè)Y1、Y2、Y3為正態(tài)隨機(jī)變量,它們的方差V(Y1)、V(Y2)、V(Y3)相等〔題中并未給定上述條件,這里只能假定它們近似成立〕,那么在H0:123成立的條件下,有檢驗(yàn)統(tǒng)計量SSR/(m1)(m1)312,分母自由度為F服從分子自由度為SSE/(nm)(nm)18315的F分布。檢驗(yàn)統(tǒng)計量的樣本值為SSR/(m1)438.43316.46Fm)508.83SSE/(n183③建立檢驗(yàn)規(guī)那么此題要求0.05。查F分布表得到F0.05(2,15)3.68。拒絕域?yàn)?.68,,承受域?yàn)?,3.68。④進(jìn)展檢驗(yàn)并做出檢驗(yàn)結(jié)論由于F6.46F0.05(2,15)3.68,檢驗(yàn)統(tǒng)計量的樣本值落在拒絕域,所以拒絕原假H0。樣本證據(jù)顯著地說明,三種不同的廣告宣傳方式的效果有差異。從本市高考考生中簡單隨機(jī)抽取50人,登記個人的考試成績、性別、父母文化程度〔按父母中較高者,文化程度記作:A——大專以上,B——高中,C——初中,D小學(xué)以下〕。數(shù)據(jù)如下:500,女,A〕〔498,男,A〕〔540,男,A〕〔530,女,A〕〔450,女,A〕400,女,A〕〔560,男,A〕〔460,男,A〕〔510,男,A〕〔520,女,A〕524,男,A〕〔450,男,B〕〔490,女,B〕〔430,男,B〕〔520,男,B〕540,女,B〕〔410,男,B〕〔390,男,B〕〔580,女,B〕〔320,男,B〕430,男,B〕〔400,女,B〕〔550,女,B〕〔370,女,B〕〔380,男,B〕470,男,B〕〔570,女,C〕〔320,女,C〕〔350,女,C〕〔420,男,C〕450,男,C〕〔480,女,C〕〔530,女,C〕〔540,男,C〕〔390,男,C〕410,女,C〕〔310,女,C〕〔300,男,C〕〔540,女,D〕〔560,女,D〕290,女,D〕〔310,男,D〕〔300,男,D〕〔340,男,D〕〔490,男,D〕280,男,D〕〔310,女,D〕〔320,女,D〕〔405,女,D〕〔410,男,D〕〔1〕試檢驗(yàn)學(xué)生的性別是否顯著地影響考試成績〔顯著性水平0.05,用P-值規(guī)那么和臨word文檔精品文檔分享38word文檔精品文檔分享界值規(guī)那么〕〔2〕試檢驗(yàn)家長的文化程度是否顯著地影響學(xué)生的考試成績〔顯著性水平0.05,用P-值規(guī)那么和臨界值規(guī)那么〕解:〔一〕〔1〕提出假設(shè)word文檔精品文檔分享H0:H1:212word文檔精品文檔分享〔2〕計算離差平方和性別i成績j410430380490498430390470420540300310280410540560524520450390300460450340500450490350530310290405400520400580女550 570540310530540370320480410560320m2n126n224n50y111122y210725y21847y124930980y225008425y299

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論