版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
河南省駐馬店2024屆數(shù)學九上期末統(tǒng)考模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題3分,共30分)1.反比例函數(shù)的圖像經(jīng)過點,,則下列關(guān)系正確的是()A. B. C. D.不能確定2.如圖,AB,AC分別為⊙O的內(nèi)接正三角形和內(nèi)接正四邊形的一邊,若BC恰好是同圓的一個內(nèi)接正n邊形的一邊,則n的值為()A.8 B.10 C.12 D.153.若點是直線上一點,已知,則的最小值是()A.4 B. C. D.24.若點在反比例函數(shù)的圖象上,則關(guān)于的二次方程的根的情況是().A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根C.沒有實數(shù)根 D.無法確定5.下列方程中,是關(guān)于x的一元二次方程是()A. B.x2+2x=x2﹣1C.a(chǎn)x2+bx+c=0 D.3(x+1)2=2(x+1)6.三角尺在燈泡O的照射下在墻上形成的影子如圖所示,OA=20cm,OA′=50cm,則這個三角尺的周長與它在墻上形成的影子的周長的比是()A.5:2 B.2:5 C.4:25 D.25:47.下列二次函數(shù)的開口方向一定向上的是()A. B. C. D.8.某校進行體操隊列訓練,原有8行10列,后增加40人,使得隊伍增加的行數(shù)、列數(shù)相同,你知道增加了多少行或多少列嗎?設(shè)增加了行或列,則列方程得()A.(8﹣)(10﹣)=8×10﹣40 B.(8﹣)(10﹣)=8×10+40C.(8+)(10+)=8×10﹣40 D.(8+)(10+)=8×10+409.已知2x=3y(y≠0),則下面結(jié)論成立的是()A. B.C. D.10.用配方法解方程,下列配方正確的是()A. B. C. D.二、填空題(每小題3分,共24分)11.關(guān)于x的分式方程有增根,則m的值為__________.12.如圖,AB是⊙O的直徑,弦CD⊥AB于點E,若∠CDB=30°,⊙O的半徑為5cm則圓心O到弦CD的距離為_____.13.若關(guān)于x的一元二次方程的一個根為1,則k的值為__________.14.某農(nóng)科所在相同條件下做玉米種子發(fā)芽實驗,結(jié)果如下:某位顧客購進這種玉米種子10千克,那么大約有_____千克種子能發(fā)芽.15.如圖,在矩形中,.若將繞點旋轉(zhuǎn)后,點落在延長線上的點處,點經(jīng)過的路徑為,則圖中陰影部分的面積為______.16.如圖,在矩形ABCD中,AB=2,BC=4,點E、F分別在BC、CD上,若AE=,∠EAF=45°,則AF的長為_____.17.若二次函數(shù)的對稱軸為直線,則關(guān)于的方程的解為______.18.把方程2x2﹣1=x(x+3)化成一般形式是_________.三、解答題(共66分)19.(10分)如圖,四邊形中的三個頂點在⊙上,是優(yōu)弧上的一個動點(不與點、重合).(1)當圓心在內(nèi)部,∠ABO+∠ADO=70°時,求∠BOD的度數(shù);(2)當點A在優(yōu)弧BD上運動,四邊形為平行四邊形時,探究與的數(shù)量關(guān)系.20.(6分)歡歡放學回家看到桌上有三個禮包,是爸爸送給歡歡和姐姐的禮物,其中禮包是芭比娃娃,和禮包都是智能對話機器人.這些禮包用外表一樣的包裝盒裝著,看不到里面的禮物.(1)歡歡隨機地從桌上取出一個禮包,取出的是芭比娃娃的概率是多少?(2)請用樹狀圖或列表法表示歡歡隨機地從桌上取出兩個禮包的所有可能結(jié)果,并求取出的兩個禮包都是智能對話機器人的概率.21.(6分)解方程:(1)+2x-5=0;(2)=.22.(8分)如圖,在平行四邊形ABCD中,過點A作AE⊥BC,垂足為E,連接DE,F(xiàn)為線段DE上一點,且∠AFE=∠B,(1)求證:△ADF∽△DEC(2)若AB=4,AD=3,AE=3,求AF的長.23.(8分)圖①,圖②都是8×8的正方形網(wǎng)格,每個小正方形的頂點稱為格點.線段OM,ON的端點均在格點上.在圖①,圖②給定的網(wǎng)格中以O(shè)M,ON為鄰邊各畫一個四邊形,使第四個頂點在格點上.要求:(1)圖①中所畫的四邊形是中心對稱圖形;(2)圖②中所畫的四邊形是軸對稱圖形;(3)所畫的兩個四邊形不全等.24.(8分)如圖,拋物線的對稱軸是直線,且與軸相交于A,B兩點(點B在點A的右側(cè)),與軸交于點C.(1)求拋物線的解析式和A,B兩點的坐標;(2)若點P是拋物線上B、C兩點之間的一個動點(不與B,C重合),則是否存在一點P,使△BPC的面積最大?若存在,請求出△BPC的最大面積;若不存在,試說明理由.25.(10分)一張長為30cm,寬20cm的矩形紙片,如圖1所示,將這張紙片的四個角各剪去一個邊長相同的正方形后,把剩余部分折成一個無蓋的長方體紙盒,如圖1所示,如果折成的長方體紙盒的底面積為264cm2,求剪掉的正方形紙片的邊長.26.(10分)在平面直角坐標系xOy中,已知拋物線G:y=ax2﹣2ax+4(a≠0).(1)當a=1時,①拋物線G的對稱軸為x=;②若在拋物線G上有兩點(2,y1),(m,y2),且y2>y1,則m的取值范圍是;(2)拋物線G的對稱軸與x軸交于點M,點M與點A關(guān)于y軸對稱,將點M向右平移3個單位得到點B,若拋物線G與線段AB恰有一個公共點,結(jié)合圖象,求a的取值范圍.
參考答案一、選擇題(每小題3分,共30分)1、B【分析】根據(jù)點的橫坐標結(jié)合反比例函數(shù)圖象上點的坐標特征即可求出y1、y2的值,比較后即可得出結(jié)論.【題目詳解】解:∵反比例函數(shù)的圖象經(jīng)過點,,
∴y1=3,y2=,
∵3>,
∴.
故選:B.【題目點撥】本題考查了反比例函數(shù)圖象上點的坐標特征,根據(jù)點的橫坐標利用反比例函數(shù)圖象上點的坐標特征求出點的縱坐標是解題的關(guān)鍵.2、C【分析】根據(jù)圖形求出正多邊形的中心角,再由正多邊形的中心角和邊的關(guān)系:,即可求得.【題目詳解】連接OA、OB、OC,如圖,∵AC,AB分別為⊙O的內(nèi)接正四邊形與內(nèi)接正三角形的一邊,∴∠AOC==90°,∠AOB==120°,∴∠BOC=∠AOB﹣∠AOC=30°,∴n==12,即BC恰好是同圓內(nèi)接一個正十二邊形的一邊.故選:C.【題目點撥】本題考查正多邊形的中心角和邊的關(guān)系,屬基礎(chǔ)題.3、B【分析】根據(jù)題意先確定點B在哪個位置時的最小值,先作點A關(guān)于直線CD的對稱點E,點B、E、O三點在一條直線上,再根據(jù)題意,連結(jié)OE與CD的交點就是點B,求出OE的長即為所求.【題目詳解】解:在y=-x+2中,當x=0時,y=2,當y=0時,0=-x+2,解得x=2,
∴直線y=-x+2與x的交點為C(2.0),與y軸的交點為D(0,2),如圖,∴OC=OD=2,∵OC⊥OD,:OC⊥OD,∴△OCD是等腰直角三角形,
∴∠OCD=45°,∴A(0,-2),∴OA=OC=2
連接AC,如圖,
∵OA⊥OC,
∴△OCA是等腰直角三角形,
∴∠OCA=45°,
∴∠ACD=∠OCA+∠OCD=90°,
∴.AC⊥CD,
延長AC到點E,使CE=AC,連接BE,作EF⊥軸于點F,
則點E與點A關(guān)于直線y=-x+2對稱,∠EFO=∠AOC=90,
點O、點B、點E三點共線時,OB+AB取最小值,最小值為OE的長,
在△CEF和△CAO中,
∴△CEF≌OCAO(AAS),
∴EF=OA=2,CF=OC=2
∴OF=OC+CF=4,
即OB+AB的最小值為.故選:B【題目點撥】本題考查的是最短路線問題,找最短路線是解題關(guān)鍵.找一點的對稱點連接另一點和對稱點與對稱軸的交點就是B點.4、A【分析】將點P的坐標代入反比例函數(shù)的表達式中求出k的值,進而得出一元二次方程,根據(jù)根的判別式進行判斷即可.【題目詳解】∵點在反比例函數(shù)的圖象上,∴,即,∴關(guān)于的二次方程為,∵,∴方程有兩個不相等的實數(shù)根,故選A.【題目點撥】本題考查利用待定系數(shù)法求解反比例函數(shù)的表達式,根的判別式,熟練掌握根的判別式是解題的關(guān)鍵.5、D【解題分析】利用一元二次方程的定義判斷即可.【題目詳解】A、=3不是整式方程,不符合題意;B、方程整理得:2x+1=0,是一元一次方程,不符合題意;C、ax2+bx+c=0沒有條件a≠0,不一定是一元二次方程,不符合題意;D、3(x+1)2=2(x+1)是一元二次方程,符合題意,故選:D.【題目點撥】此題考查了一元二次方程的定義,熟練掌握一元二次方程的定義是解本題的關(guān)鍵.6、B【解題分析】先根據(jù)相似三角形對應邊成比例求出三角尺與影子的相似比,再根據(jù)相似三角形周長的比等于相似比解答即可.【題目詳解】如圖,∵OA=20cm,OA′=50cm,∴===∵三角尺與影子是相似三角形,∴三角尺的周長與它在墻上形成的影子的周長的比==2:5.故選B.7、C【分析】利用拋物線開口方向向上,則二次項系數(shù)大于0判斷即可.【題目詳解】二次函數(shù)的開口方向一定向上,則二次項系數(shù)大于0,
故選:C.【題目點撥】此題主要考查了二次函數(shù)的性質(zhì),熟練掌握二次函數(shù)y=ax2+bx+c中,當a>0,開口向上解題是解題關(guān)鍵.8、D【解題分析】增加了行或列,現(xiàn)在是行,列,所以(8+)(10+)=8×10+40.9、A【解題分析】試題解析:A、兩邊都除以2y,得,故A符合題意;B、兩邊除以不同的整式,故B不符合題意;C、兩邊都除以2y,得,故C不符合題意;D、兩邊除以不同的整式,故D不符合題意;故選A.10、D【分析】把方程兩邊都加上4,然后把方程左邊寫成完全平方形式即可.【題目詳解】∵,∴,∴.故選:D.【題目點撥】本題考查了配方法解一元二次方程,解題時要注意解題步驟的正確應用.①把常數(shù)項移到等號的右邊;②把二次項的系數(shù)化為1;③等式兩邊同時加上一次項系數(shù)一半的平方得出即可.二、填空題(每小題3分,共24分)11、1.【解題分析】去分母得:7x+5(x-1)=2m-1,因為分式方程有增根,所以x-1=0,所以x=1,把x=1代入7x+5(x-1)=2m-1,得:7=2m-1,解得:m=1,故答案為1.12、2.5cm.【分析】根據(jù)圓周角定理得到∠COB=2∠CDB=60°,然后根據(jù)含30度的直角三角形三邊的關(guān)系求出OE即可.【題目詳解】∵CD⊥AB,∴∠OEC=90°,∵∠COB=2∠CDB=2×30°=60°,∴OE=OC=×5=2.5,即圓心O到弦CD的距離為2.5cm.故答案為2.5cm.【題目點撥】本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.13、0【解題分析】把x=1代入方程得,,即,解得.此方程為一元二次方程,,即,故答案為0.14、1.1【分析】觀察圖中的頻率穩(wěn)定在哪個數(shù)值附近,由此即可求出作物種子的概率.【題目詳解】解:∵大量重復試驗發(fā)芽率逐漸穩(wěn)定在0.11左右,∴10kg種子中能發(fā)芽的種子的質(zhì)量是:10×0.11=1.1(kg)故答案為:1.1.【題目點撥】本題考查了利用頻率估計概率:大量重復實驗時,事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率.用頻率估計概率得到的是近似值,隨實驗次數(shù)的增多,值越來越精確.15、【分析】先利用直角三角形的性質(zhì)和勾股定理求出BD和BC的長,再求出和扇形BDE的面積,兩者作差即可得.【題目詳解】由矩形的性質(zhì)得:的面積為扇形BDE所對的圓心角為,所在圓的半徑為BD則扇形BDE的面積為所以圖中陰影部分的面積為故答案為:.【題目點撥】本題考查了矩形的性質(zhì)、直角三角形的性質(zhì)、勾股定理、旋轉(zhuǎn)的性質(zhì)、扇形的面積公式,這是一道基礎(chǔ)類綜合題,求出扇形BDE的面積是解題關(guān)鍵.16、【解題分析】分析:取AB的中點M,連接ME,在AD上截取ND=DF,設(shè)DF=DN=x,則NF=x,再利用矩形的性質(zhì)和已知條件證明△AME∽△FNA,利用相似三角形的性質(zhì):對應邊的比值相等可求出x的值,在直角三角形ADF中利用勾股定理即可求出AF的長.詳解:取AB的中點M,連接ME,在AD上截取ND=DF,設(shè)DF=DN=x,∵四邊形ABCD是矩形,∴∠D=∠BAD=∠B=90°,AD=BC=4,∴NF=x,AN=4﹣x,∵AB=2,∴AM=BM=1,∵AE=,AB=2,∴BE=1,∴ME=,∵∠EAF=45°,∴∠MAE+∠NAF=45°,∵∠MAE+∠AEM=45°,∴∠MEA=∠NAF,∴△AME∽△FNA,∴,∴,解得:x=∴AF=故答案為.點睛:本題考查了矩形的性質(zhì)、相似三角形的判斷和性質(zhì)以及勾股定理的運用,正確添加輔助線構(gòu)造相似三角形是解題的關(guān)鍵,17、,【分析】根據(jù)對稱軸方程求得b,再代入解一元二次方程即可.【題目詳解】解:∵二次函數(shù)y=x2+bx-5的對稱軸為直線x=1,∴=1,即b=-2∴解得:,故答案為,.【題目點撥】本題主要考查的是拋物線與x軸的交點、一元二次方程等知識,根據(jù)拋物線的對稱軸確定b的值是解答本題的關(guān)鍵.18、x2﹣3x﹣1=1【解題分析】2x2﹣1=x(x+3),2x2﹣1=x2+3x,則2x2﹣x2﹣3x﹣1=1,故x2﹣3x﹣1=1,故答案為x2﹣3x﹣1=1.三、解答題(共66分)19、(1)140°;(2)當點A在優(yōu)弧BD上運動,四邊形為平行四邊形時,點O在∠BAD內(nèi)部時,+=60°;點O在∠BAD外部時,|-|=60°.【解題分析】(1)連接OA,如圖1,根據(jù)等腰三角形的性質(zhì)得∠OAB=∠ABO,∠OAD=∠ADO,則∠OAB+∠OAD=∠ABO+∠ADO=70°,然后根據(jù)圓周角定理易得∠BOD=2∠BAD=140°;(2)分點O在∠BAD內(nèi)部和外部兩種情形分類討論:①當點O在∠BAD內(nèi)部時,首先根據(jù)四邊形OBCD為平行四邊形,可得∠BOD=∠BCD,∠OBC=∠ODC;然后根據(jù)∠BAD+∠BCD=180°,∠BAD=∠BOD,求出∠BOD的度數(shù),進而求出∠BAD的度數(shù);最后根據(jù)平行四邊形的性質(zhì),求出∠OBC、∠ODC的度數(shù),再根據(jù)∠ABC+∠ADC=180°,求出∠OBA+∠ODA等于多少即可.②當點O在∠BAD外部時:Ⅰ、首先根據(jù)四邊形OBCD為平行四邊形,可得∠BOD=∠BCD,∠OBC=∠ODC;然后根據(jù)∠BAD+∠BCD=180°,∠BAD=∠BOD,求出∠BOD的度數(shù),進而求出∠BAD的度數(shù);最后根據(jù)OA=OD,OA=OB,判斷出∠OAD=∠ODA,∠OAB=∠OBA,進而判斷出∠OBA=∠ODA+60°即可.Ⅱ、首先根據(jù)四邊形OBCD為平行四邊形,可得∠BOD=∠BCD,∠OBC=∠ODC;然后根據(jù)∠BAD+∠BCD=180°,∠BAD=∠BOD,求出∠BOD的度數(shù),進而求出∠BAD的度數(shù);最后根據(jù)OA=OD,OA=OB,判斷出∠OAD=∠ODA,∠OAB=∠OBA,進而判斷出∠ODA=∠OBA+60°即可.【題目詳解】(1)連接OA,如圖1,∵OA=OB,OA=OD,∵∠OAB=∠ABO,∠OAD=∠ADO,∴∠OAB+∠OAD=∠ABO+∠ADO=70°,即∠BAD=70°,∴∠BOD=2∠BAD=140°;(2)①如圖2,,∵四邊形OBCD為平行四邊形,∴∠BOD=∠BCD,∠OBC=∠ODC,又∵∠BAD+∠BCD=180°,∠BAD=∠BOD,∴∠BOD+∠BOD=180°,∴∠BOD=120°,∠BAD=120°÷2=60°,∴∠OBC=∠ODC=180°-120°=60°,又∵∠ABC+∠ADC=180°,∴∠OBA+∠ODA=180°-(∠OBC+∠ODC)=180°-(60°+60°)=180°-120°=60°②Ⅰ、如圖3,,∵四邊形OBCD為平行四邊形,∴∠BOD=∠BCD,∠OBC=∠ODC,又∵∠BAD+∠BCD=180°,∠BAD=∠BOD,∴∠BOD+∠BOD=180°,∴∠BOD=120°,∠BAD=120°÷2=60°,∴∠OAB=∠OAD+∠BAD=∠OAD+60°,∵OA=OD,OA=OB,∴∠OAD=∠ODA,∠OAB=∠OBA,∴∠OBA-∠ODA=60°.Ⅱ、如圖4,,∵四邊形OBCD為平行四邊形,∴∠BOD=∠BCD,∠OBC=∠ODC,又∵∠BAD+∠BCD=180°,∠BAD=∠BOD,∴∠BOD+∠BOD=180°,∴∠BOD=120°,∠BAD=120°÷2=60°,∴∠OAB=∠OAD-∠BAD=∠OAD-60°,∵OA=OD,OA=OB,∴∠OAD=∠ODA,∠OAB=∠OBA,∴∠OBA=∠ODA-60°,即∠ODA-∠OBA=60°.所以,當點A在優(yōu)弧BD上運動,四邊形為平行四邊形時,點O在∠BAD內(nèi)部時,+=60°;點O在∠BAD外部時,|-|=60°.【題目點撥】(1)此題主要考查了圓周角定理的應用,要熟練掌握,解答此題的關(guān)鍵是要明確:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.(2)此題還考查了三角形的內(nèi)角和定理,要熟練掌握,解答此題的關(guān)鍵是要明確:三角形的內(nèi)角和是180°.(3)此題還考查了平行四邊形的性質(zhì)和應用,要熟練掌握,解答此題的關(guān)鍵是要明確平行四邊形的性質(zhì):①邊:平行四邊形的對邊相等.②角:平行四邊形的對角相等.③對角線:平行四邊形的對角線互相平分.(4)此題還考查了圓內(nèi)接四邊形的性質(zhì),要熟練掌握,解答此題的關(guān)鍵是要明確:①圓內(nèi)接四邊形的對角互補.②圓內(nèi)接四邊形的任意一個外角等于它的內(nèi)對角(就是和它相鄰的內(nèi)角的對角).20、(1);(2)【分析】(1)根據(jù)一共三個禮包,芭比娃娃的禮包占一種即可計算概率;(2)列出所有可能的結(jié)果,再找到符合要求的個數(shù),即可得到概率.【題目詳解】(1)根據(jù)題意,可知取出的是芭比娃娃的概率是.(2)結(jié)果:,,,,,,由圖可知,共有6種等可能的結(jié)果,而符合要求的是,兩種,∴取出的兩個禮包都是智能機器人的概率是.【題目點撥】本題考查了列表法或樹狀法求概率,正確列出所有可能結(jié)果是解題的關(guān)鍵.21、(1);(2);過程見詳解.【分析】(1)利用因式分解法解一元二次方程即可;(2)利用直接開平方法求解即可.【題目詳解】解:(1)+2x-5=0解得:;(2)=解得.【題目點撥】本題主要考查一元二次方程的解法,熟練掌握一元二次方程的解法是解題的關(guān)鍵.22、(1)見解析(2)AF=2【題目詳解】(1)證明:∵四邊形ABCD是平行四邊形∴AD∥BCAB∥CD∴∠ADF=∠CED∠B+∠C=180°∵∠AFE+∠AFD=,∠AFE=∠B∴∠AFD=∠C∴△ADF∽△DEC(2)解:∵四邊形ABCD是平行四邊形∴AD∥BCCD=AB=4又∵AE⊥BC∴AE⊥AD在Rt△ADE中,DE=∵△ADF∽△DEC∴∴∴AF=23、(1)見解析;(2)見解析;(3)見解析【分析】(1)設(shè)小正方形的邊長為1,由勾股定理可知,由圖,結(jié)合題中要求可以O(shè)M,ON為鄰邊畫一個菱形;(2)符合題意的有菱形、箏形等是軸對稱圖形;(3)圖①和圖②的兩個四邊形不能是完全相同的.【題目詳解】解:(1)如圖即為所求(2)如圖即為所求【題目點撥】本題考查了軸對稱與中心對稱圖形,屬于開放題,熟練掌握軸對稱與中心對稱圖形的含義是解題的關(guān)鍵.24、(1),點A的坐標為(-2,0),點B的坐標為(8,0);(2)當=4時,△PBC的面積最大,最大面積是1.【分析】(1)由拋物線的對稱軸是直線x=3,解出a的值,即可求得拋物線解析式,在令其y值為0,解一元二次方程即可求出A和B的坐標;
(2)易求點C的坐標為(0,4),設(shè)直線BC的解析式為y=kx+b(k≠0),將B(8,0),C(0,4)代入y=kx+b,解出k和b的值,即得直線BC的解析式;設(shè)點P的坐標為(,),過點P作PD∥y軸,交直線BC于點D,則點D的坐標為(,),利用面積公式得出關(guān)于x的二次函數(shù),從而求得其最值.【題目詳解】(1)∵拋物線的對稱軸是直線,∴,解得,∴拋物線的解析式為:,當時,即,解之得:,,∴點A的坐標為(-2,0),點B的坐標為(8,0),故答案為:,點A的坐標為(-2,0),點B的坐標為(8,0);(2)當時,∴點C的坐標為(0,4)設(shè)直線BC的解析式為,將點B(8,0)和點C(0,4)的坐標代入得:,解之得:,∴直線BC的解析式為,假設(shè)存在,設(shè)點P的坐標為(,),過點P作PD∥軸,交直線BC于點D,交軸于點E,則點D的坐標為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 第四節(jié) 給水用水量標準 第五節(jié) 給水設(shè)計流21課件講解
- 2024秋新滬粵版物理8年級上冊教學課件 1.3 長度和時間測量的應用
- 《感壓膠基礎(chǔ)技術(shù)》課件
- 《乳房疾病》課件
- 內(nèi)蒙古烏蘭察布市集寧區(qū)2024屆九年級上學期期末考試數(shù)學試卷(含解析)
- 養(yǎng)老院老人請假審批制度
- 《電工基礎(chǔ)知識講解》課件
- 《創(chuàng)新的原點》課件
- 教培退款協(xié)議書(2篇)
- 《礦內(nèi)空氣》課件
- 2024年國家公務(wù)員考試《申論》真題(副省級)及參考答案
- 廣東省廣州市越秀區(qū)2023-2024學年八年級上學期期末語文試題(解析版)
- 舞臺人生:走進戲劇藝術(shù)學習通超星期末考試答案章節(jié)答案2024年
- 戰(zhàn)馬魂(2023年重慶A中考語文試卷記敘文閱讀題及答案)
- 智慧的秘密智慧樹知到期末考試答案2024年
- 保密協(xié)議貸款
- 科研倫理與學術(shù)規(guī)范期末考試
- 英語語言學(山東大學)智慧樹知到課后章節(jié)答案2023年下山東大學(威海)
- 《建筑制圖基礎(chǔ)實訓》畫圖大作業(yè)布置
- (格式已排好)國家開放大學電大《計算機應用基礎(chǔ)(專)》終結(jié)性考試大作業(yè)答案任務(wù)一
- 武漢地區(qū)區(qū)域穩(wěn)定性評價
評論
0/150
提交評論