版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年湖南省株洲市茶陵縣茶陵三中高二上數(shù)學(xué)期末檢測模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.圓關(guān)于直線對稱圓的標(biāo)準(zhǔn)方程是()A. B.C. D.2.某校開展研學(xué)活動時進(jìn)行勞動技能比賽,通過初選,選出共6名同學(xué)進(jìn)行決賽,決出第1名到第6名的名次(沒有并列名次),和去詢問成績,回答者對說“很遺?,你和都末拿到冠軍;對說“你當(dāng)然不是最差的”.試從這個回答中分析這6人的名次排列順序可能出現(xiàn)的結(jié)果有()A.720種 B.600種C.480種 D.384種3.下列說法正確的是()A.空間中的任意三點(diǎn)可以確定一個平面B.四邊相等的四邊形一定是菱形C.兩條相交直線可以確定一個平面D.正四棱柱的側(cè)面都是正方形4.在正四面體中,棱長為2,且E是棱AB中點(diǎn),則的值為A. B.1C. D.5.已知拋物線的焦點(diǎn)為,為坐標(biāo)原點(diǎn),點(diǎn)在拋物線上,且,點(diǎn)是拋物線的準(zhǔn)線上的一動點(diǎn),則的最小值為().A. B.C. D.6.函數(shù)在單調(diào)遞增的一個必要不充分條件是()A. B.C. D.7.橢圓的左、右焦點(diǎn)分別為、,上存在兩點(diǎn)、滿足,,則的離心率為()A. B.C. D.8.已知直線與平行,則的值為()A. B.C. D.9.直線分別與軸,軸交于,兩點(diǎn),點(diǎn)在圓上,則面積的取值范圍是A. B.C. D.10.已知拋物線的焦點(diǎn)為,過點(diǎn)的直線交拋物線于,兩點(diǎn),則的取值范圍是()A. B.C. D.11.直線l:的傾斜角為()A. B.C. D.12.長方體中,,,,為側(cè)面內(nèi)(含邊界)的動點(diǎn),且滿足,則四棱錐體積的最小值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,命題p:,;命題q:,,且為真命題,則a的取值范圍為______14.若拋物線上一點(diǎn)到其準(zhǔn)線的距離為4,則拋物線的標(biāo)準(zhǔn)方程為___________.15.程大位《算法統(tǒng)宗》里有詩云“九百九十六斤棉,贈分八子做盤纏.次第每人多十七,要將第八數(shù)來言.務(wù)要分明依次弟,孝和休惹外人傳.”意為:996斤棉花,分別贈送給8個子女做旅費(fèi),從第一個開始,以后每人依次多17斤,直到第八個孩子為止.分配時一定要等級分明,使孝順子女的美德外傳,則第七個孩子分得斤數(shù)為___________.16.若恒成立,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐P-ABCD中,底面ABCD是邊長為2的菱形,∠DAB=60°,PD⊥底面ABCD,點(diǎn)F為棱PD的中點(diǎn),二面角的余弦值為.(1)求PD的長;(2)求異面直線BF與PA所成角的余弦值;(3)求直線AF與平面BCF所成角的正弦值.18.(12分)已知三棱柱中,面底面,,底面是邊長為的等邊三角形,,、分別在棱、上,且.(1)求證:底面;(2)在棱上找一點(diǎn),使得和面所成角的余弦值為,并說明理由.19.(12分)已知,2,4,6中的三個數(shù)為等差數(shù)列的前三項(xiàng),且100不在數(shù)列中,102在數(shù)列中.(1)求數(shù)列的通項(xiàng);(2)設(shè),求數(shù)列的前項(xiàng)和.20.(12分)如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,側(cè)棱底面ABCD,,,E為PB中點(diǎn),F(xiàn)為PC上一點(diǎn),且(1)求證:;(2)求平面DEF與平面ABCD所成銳二面角的余弦值21.(12分)已知函數(shù),(1)求曲線在點(diǎn)處的切線方程;(2)若對任意的,恒成立,求實(shí)數(shù)的取值范圍22.(10分)已知是公差不為零等差數(shù)列,,且、、成等比數(shù)列(1)求數(shù)列的通項(xiàng)公式:(2)設(shè).?dāng)?shù)列{}的前項(xiàng)和為,求證:
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】先根據(jù)圓的標(biāo)準(zhǔn)方程得到圓的圓心和半徑,求出圓心關(guān)于直線的對稱點(diǎn),進(jìn)而寫出圓的標(biāo)準(zhǔn)方程.【詳解】因?yàn)閳A的圓心為,半徑為,且關(guān)于直線對稱的點(diǎn)為,所以所求圓的圓心為、半徑為,即所求圓的標(biāo)準(zhǔn)方程為.故選:D.2、D【解析】不是第一名且不是最后一名,的限制最多,先排有4種情況,再排,也有4種情況,余下的問題是4個元素在4個位置全排列,根據(jù)分步計(jì)數(shù)原理求解即可【詳解】由題意,不是第一名且不是最后一名,的限制最多,故先排,有4種情況,再排,也有4種情況,余下4人有種情況,利用分步相乘計(jì)數(shù)原理知有種情況故選:D.3、C【解析】根據(jù)立體幾何相關(guān)知識對各選項(xiàng)進(jìn)行判斷即可.【詳解】對于A,根據(jù)公理2及推論可知,不共線的三點(diǎn)確定一個平面,故A錯誤;對于B,在一個平面內(nèi),四邊相等的四邊形才一定是菱形,故B錯誤;對于C,根據(jù)公理2及推論可知,兩條相交直線可以確定一個平面,故C正確;對于D,正四棱柱指上、下底面都是正方形且側(cè)棱垂直于底面的棱柱,側(cè)面可以是矩形,故D錯誤.故選:C4、A【解析】根據(jù)題意,由正四面體的性質(zhì)可得:,可得,由E是棱中點(diǎn),可得,代入,利用數(shù)量積運(yùn)算性質(zhì)即可得出.【詳解】如圖所示由正四面體的性質(zhì)可得:可得:是棱中點(diǎn)故選:【點(diǎn)睛】本題考查空間向量的線性運(yùn)算,考查立體幾何中的垂直關(guān)系,考查轉(zhuǎn)化與化歸思想,屬于中等題型.5、A【解析】求出點(diǎn)坐標(biāo),做出關(guān)于準(zhǔn)線的對稱點(diǎn),利用連點(diǎn)之間相對最短得出為的最小值【詳解】解:拋物線的準(zhǔn)線方程為,,到準(zhǔn)線的距離為2,故點(diǎn)縱坐標(biāo)為1,把代入拋物線方程可得不妨設(shè)在第一象限,則,點(diǎn)關(guān)于準(zhǔn)線的對稱點(diǎn)為,連接,則,于是故的最小值為故選:A【點(diǎn)睛】本題考查了拋物線的簡單幾何性質(zhì),屬于基礎(chǔ)題6、D【解析】求出導(dǎo)函數(shù),由于函數(shù)在區(qū)間單調(diào)遞增,可得在區(qū)間上恒成立,求出的范圍,再根據(jù)充分必要條件的定義即可判斷得解.【詳解】由題得,函數(shù)在區(qū)間單調(diào)遞增,在區(qū)間上恒成立,而在區(qū)間上單調(diào)遞減,選項(xiàng)中只有是的必要不充分條件.選項(xiàng)AC是的充分不必要條件,選項(xiàng)B是充要條件.故選:D7、A【解析】作點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn),連接、、、,推導(dǎo)出、、三點(diǎn)共線,利用橢圓的定義可求得、、、,推導(dǎo)出,利用勾股定理可得出關(guān)于、的齊次等式,即可求得該橢圓的離心率.【詳解】作點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn),連接、、、,則為、的中點(diǎn),故四邊形為平行四邊形,故且,則,所以,,故、、三點(diǎn)共線,由橢圓定義,,有,所以,則,再由橢圓定義,有,因?yàn)椋?,在中,即,所以,離心率故選:A.8、C【解析】由兩直線平行可得,即可求出答案.【詳解】直線與平行故選:C.9、A【解析】分析:先求出A,B兩點(diǎn)坐標(biāo)得到再計(jì)算圓心到直線距離,得到點(diǎn)P到直線距離范圍,由面積公式計(jì)算即可詳解:直線分別與軸,軸交于,兩點(diǎn),則點(diǎn)P在圓上圓心為(2,0),則圓心到直線距離故點(diǎn)P到直線的距離的范圍為則故答案選A.點(diǎn)睛:本題主要考查直線與圓,考查了點(diǎn)到直線的距離公式,三角形的面積公式,屬于中檔題10、B【解析】當(dāng)直線斜率存在時,設(shè)直線方程,聯(lián)立方程組,結(jié)合根與系數(shù)關(guān)系可得,進(jìn)而求得取值范圍,當(dāng)斜率不存在是,可得,兩點(diǎn)坐標(biāo),進(jìn)而可得的值.【詳解】當(dāng)直線斜率存在時,設(shè)直線方程為,,,聯(lián)立方程,得,恒成立,則,,,,,所以,當(dāng)直線斜率不存在時,直線方程為,所以,,,綜上所述:,故選:B.11、D【解析】先求得直線的斜率,由此求得傾斜角.【詳解】依題意,直線的斜率為,傾斜角的范圍為,則傾斜角為.故選:D.12、D【解析】取的中點(diǎn),以點(diǎn)為坐標(biāo)原點(diǎn),、、的方向分別為、、軸的正方向建立空間直角坐標(biāo)系,分析可知點(diǎn)的軌跡是以點(diǎn)、為焦點(diǎn)的橢圓,求出橢圓的方程,可知當(dāng)點(diǎn)為橢圓與棱或的交點(diǎn)時,點(diǎn)到平面的距離取最小值,由此可求得四棱錐體積的最小值.【詳解】取的中點(diǎn),以點(diǎn)為坐標(biāo)原點(diǎn),、、的方向分別為、、軸的正方向建立如下圖所示的空間直角坐標(biāo)系,設(shè)點(diǎn),其中,,則、,因?yàn)槠矫?,平面,則,所以,,同理可得,所以,,所以點(diǎn)的軌跡是以點(diǎn)、為焦點(diǎn),且長軸長為的橢圓的一部分,則,,,所以,點(diǎn)的軌跡方程為,點(diǎn)到平面的距離為,當(dāng)點(diǎn)為曲線與棱或棱的交點(diǎn)時,點(diǎn)到平面的距離取最小值,將代入方程得,因此,四棱錐體積的最小值為.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先求出命題p,q為真命題時的a的取值范圍,根據(jù)為真可知p,q都是真命題,即可求得答案.【詳解】命題p:,為真時,有,命題q:,為真時,則有,即,故為真命題時,且,即,故a的取值范圍為,故答案為:14、【解析】先由拋物線的方程求出準(zhǔn)線的方程,然后根據(jù)點(diǎn)到準(zhǔn)線的距離可求,進(jìn)而可得拋物線的標(biāo)準(zhǔn)方程.【詳解】拋物線的準(zhǔn)線方程為,點(diǎn)到其準(zhǔn)線的距離為,由題意可得,解得,故拋物線的標(biāo)準(zhǔn)方程為.故答案為:.15、167【解析】由題設(shè)知8個孩子分得斤數(shù)是公差為17的等差數(shù)列,設(shè)第一個孩子分得斤,應(yīng)用等差數(shù)列前n項(xiàng)和公式求,進(jìn)而由等差數(shù)列通項(xiàng)公式求即可.【詳解】由題意,設(shè)第一個孩子分得斤,則,所以,可得,故斤.故答案為:167.16、1【解析】利用導(dǎo)數(shù)研究的最小值為,再構(gòu)造研究其最值,即可確定參數(shù)a的值.【詳解】令,則且,當(dāng)時,遞減;當(dāng)時,遞增;所以,即在上恒成立,令,則,當(dāng)時,遞增;當(dāng)時,遞減;所以,綜上,.故答案為:1三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)(3)【解析】(1)以為軸,為軸,軸與垂直,建立如圖所示的空間直角坐標(biāo)系,寫出各點(diǎn)坐標(biāo),設(shè),,由空間向量法求二面角,從而求得,得長;(2)由空間向量法求異面直線所成的角;(3)由空間向量法求線面角【小問1詳解】以為軸,為軸,軸與垂直,由于菱形中,軸是的中垂線,建立如圖坐標(biāo)系,則,,,設(shè),,,,設(shè)平面一個法向量為,則,令,則,,即,平面的一個法向量是,因?yàn)槎娼怯嘞抑禐?所以,(負(fù)值舍去)所以;【小問2詳解】由(1),,,,所以異面直線BF與PA所成角的余弦值為【小問3詳解】由(1)平面的一個法向量為,又,,所以直線AF與平面BCF所成角的正弦值為18、(1)證明見解析;(2)為的中點(diǎn),理由見解析.【解析】(1)取的中點(diǎn),連接,利用面面垂直的性質(zhì)定理可得出平面,可得出,再由,結(jié)合線面垂直的判定定理可證得結(jié)論成立;(2)以點(diǎn)為坐標(biāo)原點(diǎn),、、的方向分別為、、軸的正方向建立空間直角坐標(biāo)系,設(shè)點(diǎn),利用空間向量法可得出關(guān)于實(shí)數(shù)的方程,求出的值,即可得出結(jié)論.【詳解】(1)取的中點(diǎn),連接,如圖:因?yàn)槿切问堑冗吶切?,所以,又因?yàn)槊娴酌?,平面平面,面,所以平面,又面,所以,又,,平面;?)以點(diǎn)為坐標(biāo)原點(diǎn),、、的方向分別為、、軸的正方向建立如下圖所示的空間直角坐標(biāo)系,則、、,在上找一點(diǎn),其中,,,,設(shè)面的一個法向量,則,不妨令,則,和面所成角的余弦值為,則,解得或(舍),所以,為的中點(diǎn),符合題意.19、(1)(2)【解析】(1)確定數(shù)列為遞增數(shù)列,然后由4個數(shù)確定等差數(shù)列,得通項(xiàng)公式,驗(yàn)證100和102是否為數(shù)列中的項(xiàng)得結(jié)論;(2)由裂項(xiàng)相消法求和【小問1詳解】首先數(shù)列是遞增數(shù)列,當(dāng)2,4,6為的前三項(xiàng)時,易知此時,100,102都是該數(shù)列中的項(xiàng),不滿足題意當(dāng),2,6為的前三項(xiàng)時,易知此時,100不是該數(shù)列中的項(xiàng),102是該數(shù)列中的項(xiàng),滿足題意所以【小問2詳解】因?yàn)樗运?20、(1)證明見解析(2)【解析】(1)依題意可得,再由,即可得到平面,從而建立空間直角坐標(biāo)系,利用空間向量法證明即可;(2)利用空間向量法求出二面角的余弦值;【小問1詳解】證明:因?yàn)槠矫?,平面,平面,則,,又,因?yàn)?,,平面,所以平面,故以點(diǎn)為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系如圖所示,則,0,,,0,,,1,,,1,,,0,,,所以,則,所以,故;【小問2詳解】解:解:因?yàn)椋O(shè)平面的法向量為,則,即,令,則,,故,因?yàn)榈酌?,所以的一個法向量為,所以,故平面與平面夾角的余弦值為21、(1);(2).【解析】(1)求出函數(shù)的導(dǎo)數(shù),計(jì)算,,求出切線方程即可;(2)問題轉(zhuǎn)化為,利用導(dǎo)函數(shù)求出的最大值,求出的范圍即可.【小問1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2023年布展裝修項(xiàng)目籌資方案
- 2023年可調(diào)控輥型四輥液壓軋機(jī)項(xiàng)目籌資方案
- 養(yǎng)老院老人康復(fù)設(shè)施維修人員考核獎懲制度
- 《板前明線布線圖》課件
- 2024年版物業(yè)管理委托服務(wù)詳細(xì)合同版B版
- 掛名分公司負(fù)責(zé)人的協(xié)議書(2篇)
- 2025年莆田貨運(yùn)從業(yè)資格證模擬考試題庫下載
- 2025年六盤水貨運(yùn)從業(yè)資格證模擬考試題下載
- 2025年咸寧貨運(yùn)上崗證模擬考試試題
- 2024年版高品質(zhì)國際合資合作合同版
- 《網(wǎng)絡(luò)系統(tǒng)建設(shè)與運(yùn)維》課件-項(xiàng)目一 5G技術(shù)特點(diǎn)和網(wǎng)
- 渠道襯砌施工方案(渠道預(yù)制混凝土塊)
- 2024年高考語文新課標(biāo)I卷作文“答案與問題”講評
- 籃球球星姚明課件
- 2024年工商聯(lián)副會長述職報告
- 02S515排水檢查井圖集
- 2024-2030年中國Janus激酶(JAK)抑制劑行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略分析報告
- 2025高考語文步步高大一輪復(fù)習(xí)講義教材文言文點(diǎn)線面答案精析
- 《工程勘察設(shè)計(jì)收費(fèi)標(biāo)準(zhǔn)》(2002年修訂本)-工程設(shè)計(jì)收費(fèi)標(biāo)準(zhǔn)2002修訂版
- 2024山東能源集團(tuán)中級人才庫選拔(高頻重點(diǎn)提升專題訓(xùn)練)共500題附帶答案詳解
- T-CCIIA 0004-2024 精細(xì)化工產(chǎn)品分類
評論
0/150
提交評論