版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
一、解答題1.對于平面直角坐標(biāo)系xOy中的圖形G和圖形G上的任意點(diǎn)P(x,y),給出如下定義:將點(diǎn)P(x,y)平移到P'(x+t,y﹣t)稱為將點(diǎn)P進(jìn)行“t型平移”,點(diǎn)P'稱為將點(diǎn)P進(jìn)行“t型平移”的對應(yīng)點(diǎn);將圖形G上的所有點(diǎn)進(jìn)行“t型平移”稱為將圖形G進(jìn)行“t型平移”.例如,將點(diǎn)P(x,y)平移到P'(x+1,y﹣1)稱為將點(diǎn)P進(jìn)行“l(fā)型平移”,將點(diǎn)P(x,y)平移到P'(x﹣1,y+1)稱為將點(diǎn)P進(jìn)行“﹣l型平移”.已知點(diǎn)A(2,1)和點(diǎn)B(4,1).(1)將點(diǎn)A(2,1)進(jìn)行“l(fā)型平移”后的對應(yīng)點(diǎn)A'的坐標(biāo)為.(2)①將線段AB進(jìn)行“﹣l型平移”后得到線段A'B',點(diǎn)P1(1.5,2),P2(2,3),P3(3,0)中,在線段A′B′上的點(diǎn)是.②若線段AB進(jìn)行“t型平移”后與坐標(biāo)軸有公共點(diǎn),則t的取值范圍是.(3)已知點(diǎn)C(6,1),D(8,﹣1),點(diǎn)M是線段CD上的一個(gè)動點(diǎn),將點(diǎn)B進(jìn)行“t型平移”后得到的對應(yīng)點(diǎn)為B',當(dāng)t的取值范圍是時(shí),B'M的最小值保持不變.2.如圖1,//,點(diǎn)、分別在、上,點(diǎn)在直線、之間,且.(1)求的值;(2)如圖2,直線分別交、的角平分線于點(diǎn)、,直接寫出的值;(3)如圖3,在內(nèi),;在內(nèi),,直線分別交、分別于點(diǎn)、,且,直接寫出的值.3.如圖1,點(diǎn)在直線、之間,且.(1)求證:;(2)若點(diǎn)是直線上的一點(diǎn),且,平分交直線于點(diǎn),若,求的度數(shù);(3)如圖3,點(diǎn)是直線、外一點(diǎn),且滿足,,與交于點(diǎn).已知,且,則的度數(shù)為______(請直接寫出答案,用含的式子表示).4.如圖,,點(diǎn)A、B分別在直線MN、GH上,點(diǎn)O在直線MN、GH之間,若,.(1)=;(2)如圖2,點(diǎn)C、D是、角平分線上的兩點(diǎn),且,求的度數(shù);(3)如圖3,點(diǎn)F是平面上的一點(diǎn),連結(jié)FA、FB,E是射線FA上的一點(diǎn),若,,且,求n的值.5.如圖1,把一塊含30°的直角三角板ABC的BC邊放置于長方形直尺DEFG的EF邊上.(1)根據(jù)圖1填空:∠1=°,∠2=°;(2)現(xiàn)把三角板繞B點(diǎn)逆時(shí)針旋轉(zhuǎn)n°.①如圖2,當(dāng)n=25°,且點(diǎn)C恰好落在DG邊上時(shí),求∠1、∠2的度數(shù);②當(dāng)0°<n<180°時(shí),是否會存在三角板某一邊所在的直線與直尺(有四條邊)某一邊所在的直線垂直?如果存在,請直接寫出所有n的值和對應(yīng)的那兩條垂線;如果不存在,請說明理由.6.如圖1,已知直線m∥n,AB是一個(gè)平面鏡,光線從直線m上的點(diǎn)O射出,在平面鏡AB上經(jīng)點(diǎn)P反射后,到達(dá)直線n上的點(diǎn)Q.我們稱OP為入射光線,PQ為反射光線,鏡面反射有如下性質(zhì):入射光線與平面鏡的夾角等于反射光線與平面鏡的夾角,即∠OPA=∠QPB.(1)如圖1,若∠OPQ=82°,求∠OPA的度數(shù);(2)如圖2,若∠AOP=43°,∠BQP=49°,求∠OPA的度數(shù);(3)如圖3,再放置3塊平面鏡,其中兩塊平面鏡在直線m和n上,另一塊在兩直線之間,四塊平面鏡構(gòu)成四邊形ABCD,光線從點(diǎn)O以適當(dāng)?shù)慕嵌壬涑龊?,其傳播路徑為O→P→Q→R→O→P→…試判斷∠OPQ和∠ORQ的數(shù)量關(guān)系,并說明理由.7.a(chǎn)是不為1的有理數(shù),我們把稱為a的差倒數(shù).如:2的差倒數(shù)是,現(xiàn)已知a1=,a2是a1的差倒數(shù),a3是a2的差倒數(shù),a4是a3的差倒數(shù),…(1)求a2,a3,a4的值;(2)根據(jù)(1)的計(jì)算結(jié)果,請猜想并寫出a2016?a2017?a2018的值;(3)計(jì)算:a33+a66+a99+…+a9999的值.8.閱讀材料:求1+2+22+23+24+…+22017的值.解:設(shè)S=1+2+22+23+24+…+22017,將等式兩邊同時(shí)乘以2得:2S=2+22+23+24+…+22017+22018將下式減去上式得2S-S=22018-1即S=22018-1即1+2+22+23+24+…+22017=22018-1請你仿照此法計(jì)算:(1)1+2+22+23+…+29=_____;(2)1+5+52+53+54+…+5n(其中n為正整數(shù));(3)1+2×2+3×22+4×23+…+9×28+10×29.9.在已有運(yùn)算的基礎(chǔ)上定義一種新運(yùn)算:,的運(yùn)算級別高于加減乘除運(yùn)算,即的運(yùn)算順序要優(yōu)先于運(yùn)算,試根據(jù)條件回答下列問題.(1)計(jì)算:;(2)若,則;(3)在數(shù)軸上,數(shù)的位置如下圖所示,試化簡:;(4)如圖所示,在數(shù)軸上,點(diǎn)分別以1個(gè)單位每秒的速度從表示數(shù)-1和3的點(diǎn)開始運(yùn)動,點(diǎn)向正方向運(yùn)動,點(diǎn)向負(fù)方向運(yùn)動,秒后點(diǎn)分別運(yùn)動到表示數(shù)和的點(diǎn)所在的位置,當(dāng)時(shí),求的值.10.閱讀材料:求的值.解:設(shè)①,將等式①的兩邊同乘以2,得②,用②-①得,即.即.請仿照此法計(jì)算:(1)請直接填寫的值為______;(2)求值;(3)請直接寫出的值.11.對于有理數(shù)、,定義了一種新運(yùn)算“※”為:如:,.(1)計(jì)算:①______;②______;(2)若是關(guān)于的一元一次方程,且方程的解為,求的值;(3)若,,且,求的值.12.閱讀理解:一個(gè)多位數(shù),如果根據(jù)它的位數(shù),可以從左到右分成左、中、右三個(gè)數(shù)位相同的整數(shù),其中a代表這個(gè)整數(shù)分出來的左邊數(shù),b代表的這個(gè)整數(shù)分出來的中間數(shù),c代表這個(gè)整數(shù)分出來的右邊數(shù),其中a,b,c數(shù)位相同,若b﹣a=c﹣b,我們稱這個(gè)多位數(shù)為等差數(shù).例如:357分成了三個(gè)數(shù)3,5,7,并且滿足:5﹣3=7﹣5;413223分成三個(gè)數(shù)41,32,23,并且滿足:32﹣41=23﹣32;所以:357和413223都是等差數(shù).(1)判斷:148等差數(shù),514335等差數(shù);(用“是”或“不是”填空)(2)若一個(gè)三位數(shù)是等差數(shù),試說明它一定能被3整除;(3)若一個(gè)三位數(shù)T是等差數(shù),且T是24的倍數(shù),求該等差數(shù)T.13.如圖1,在平面直角坐標(biāo)系中,A(a,0),C(b,2),且滿足,過C作軸于B,(1)求a,b的值;(2)在y軸上是否存在點(diǎn)P,使得△ABC和△OCP的面積相等,若存在,求出點(diǎn)P坐標(biāo),若不存在,試說明理由.(3)若過B作BD∥AC交y軸于D,且AE,DE分別平分∠CAB,∠ODB,如圖2,圖3,①求:∠CAB+∠ODB的度數(shù);②求:∠AED的度數(shù).14.已知點(diǎn)C在射線OA上.(1)如圖①,CDOE,若∠AOB=90°,∠OCD=120°,求∠BOE的度數(shù);(2)在①中,將射線OE沿射線OB平移得O′E'(如圖②),若∠AOB=α,探究∠OCD與∠BO′E′的關(guān)系(用含α的代數(shù)式表示)(3)在②中,過點(diǎn)O′作OB的垂線,與∠OCD的平分線交于點(diǎn)P(如圖③),若∠CPO′=90°,探究∠AOB與∠BO′E′的關(guān)系.15.如圖,已知,,且滿足.(1)求、兩點(diǎn)的坐標(biāo);(2)點(diǎn)在線段上,、滿足,點(diǎn)在軸負(fù)半軸上,連交軸的負(fù)半軸于點(diǎn),且,求點(diǎn)的坐標(biāo);(3)平移直線,交軸正半軸于,交軸于,為直線上第三象限內(nèi)的點(diǎn),過作軸于,若,且,求點(diǎn)的坐標(biāo).16.某水果店到水果批發(fā)市場采購蘋果,師傅看中了甲、乙兩家某種品質(zhì)一樣的蘋果,零售價(jià)都為8元/千克,批發(fā)價(jià)各不相同,甲家規(guī)定:批發(fā)數(shù)量不超過100千克,全部按零價(jià)的九折優(yōu)惠;批發(fā)數(shù)量超過100千克全部按零售價(jià)的八五折優(yōu)惠,乙家的規(guī)定如下表:數(shù)量范圍(千克)不超過50的部分50以上但不超過150的部分150以上的部分價(jià)格(元)零售價(jià)的95%零售價(jià)的85%零售價(jià)的75%(1)如果師傅要批發(fā)240千克蘋果選擇哪家批發(fā)更優(yōu)惠?(2)設(shè)批發(fā)x千克蘋果(),問師傅應(yīng)怎樣選擇兩家批發(fā)商所花費(fèi)用更少?17.如圖1,已知,點(diǎn)A(1,a),AH⊥x軸,垂足為H,將線段AO平移至線段BC,點(diǎn)B(b,0),其中點(diǎn)A與點(diǎn)B對應(yīng),點(diǎn)O與點(diǎn)C對應(yīng),a、b滿足.(1)填空:①直接寫出A、B、C三點(diǎn)的坐標(biāo)A(________)、B(________)、C(________);②直接寫出三角形AOH的面積________.(2)如圖1,若點(diǎn)D(m,n)在線段OA上,證明:4m=n.(3)如圖2,連OC,動點(diǎn)P從點(diǎn)B開始在x軸上以每秒2個(gè)單位的速度向左運(yùn)動,同時(shí)點(diǎn)Q從點(diǎn)O開始在y軸上以每秒1個(gè)單位的速度向下運(yùn)動.若經(jīng)過t秒,三角形AOP與三角形COQ的面積相等,試求t的值及點(diǎn)P的坐標(biāo).18.在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn).已知兩點(diǎn),且、滿足;若四邊形為平行四邊形,且,點(diǎn)在軸上.(1)如圖①,動點(diǎn)從點(diǎn)出發(fā),以每秒個(gè)單位長度沿軸向下運(yùn)動,當(dāng)時(shí)間為何值時(shí),三角形的面積等于平行四邊形面積的四分之一;(2)如圖②,當(dāng)從點(diǎn)出發(fā),沿軸向上運(yùn)動,連接、,、、存在什么樣的數(shù)量關(guān)系,請說明理由(排除在和兩點(diǎn)的特殊情況).19.如圖,學(xué)校印刷廠與A,D兩地有公路、鐵路相連,從A地購進(jìn)一批每噸8000元的白紙,制成每噸10000元的作業(yè)本運(yùn)到D地批發(fā),已知公路運(yùn)價(jià)1.5元/(t?km),鐵路運(yùn)價(jià)1.2元/(t?km).這兩次運(yùn)輸支出公路運(yùn)費(fèi)4200元,鐵路運(yùn)費(fèi)26280元.(1)白紙和作業(yè)本各多少噸?(2)這批作業(yè)本的銷售款比白紙的購進(jìn)款與運(yùn)輸費(fèi)的和多多少元?20.用如圖1的長方形和正方形鐵片(長方形的寬與正方形的邊長相等)作側(cè)面和底面、做成如圖2的豎式和橫式的兩種無蓋的長方體容器,(1)現(xiàn)有長方形鐵片2014張,正方形鐵片1176張,如果將兩種鐵片剛好全部用完,那么可加工成豎式和橫式長方體容器各有幾個(gè)?(2)現(xiàn)有長方形鐵片a張,正方形鐵片b張,如果加工這兩種容器若干個(gè),恰好將兩種鐵片剛好全部用完.則的值可能是()A.2019B.2020C.2021D.2022(3)給長方體容器加蓋可以加工成鐵盒.先工廠倉庫有35張鐵皮可以裁剪成長方形和正方形鐵片,用來加工鐵盒,已知1張鐵皮可裁剪出3張長方形鐵片或4張正方形鐵片,也可以裁剪出1張長方形鐵片和2張正方形鐵片.請問怎樣充分利用這35張鐵皮,最多可以加工成多少個(gè)鐵盒?21.在平面直角坐標(biāo)系中,點(diǎn),點(diǎn),點(diǎn).(1)的面積為______;(2)已知點(diǎn),,那么四邊形的面積為______.(3)奧地利數(shù)學(xué)家皮克發(fā)現(xiàn)了一類快速求解格點(diǎn)多邊形的方法,被稱為皮克定理:如果用m表示格點(diǎn)多邊形內(nèi)的格點(diǎn)數(shù),n表示格點(diǎn)多邊形邊上的格點(diǎn)數(shù),那么格點(diǎn)多邊形的面積S和m與n之間滿足一種數(shù)量關(guān)系.例如剛剛求解的幾個(gè)多邊形面積中,我們可以得到如表中信息:形內(nèi)格點(diǎn)數(shù)m邊界格點(diǎn)數(shù)n格點(diǎn)多邊形面積S611四邊形811五邊形208根據(jù)上述的例子,猜測皮克公式為______(用m,n表示),試計(jì)算圖②中六邊形的面積為______(本大題無需寫出解題過程,寫出正確答案即可).22.如圖,在平面直角坐標(biāo)系中,點(diǎn)為坐標(biāo)原點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,其中是二元一次方程組的解,過點(diǎn)作軸的平行線交軸于點(diǎn).(1)求點(diǎn)的坐標(biāo);(2)動點(diǎn)從點(diǎn)出發(fā),以每秒個(gè)單位長度的速度沿射線的方向運(yùn)動,連接,設(shè)點(diǎn)的運(yùn)動時(shí)間為秒,三角形的面積為,請用含的式子表示(不用寫出相應(yīng)的的取值范圍);(3)在(2)的條件下,在動點(diǎn)從點(diǎn)出發(fā)的同時(shí),動點(diǎn)從點(diǎn)出發(fā)以每秒個(gè)單位長度的速度沿線段的方向運(yùn)動.過點(diǎn)作直線的垂線,點(diǎn)為垂足;過點(diǎn)作直線的垂線,點(diǎn)為垂足.當(dāng)時(shí),求的值.23.某校為了豐富同學(xué)們的課外活動,決定給全校20個(gè)班每班配4副乒乓球拍和若干乒乓球,兩家體育用品商店對同一款乒乓球拍和乒乓球推出讓利活動,甲商店買一副乒乓球拍送10個(gè)乒乓球,乙商店所有商品均打九折(按標(biāo)價(jià)的90%)銷售,已知2副乒乓球拍和10個(gè)乒乓球110元,3副乒乓球拍和20個(gè)乒乓球170元。請解答下列問題:(1)求每副乒乓球拍和每個(gè)乒乓球的單價(jià)為多少元.(2)若每班配4副乒乓球拍和40個(gè)乒乓球,則甲商店的費(fèi)用為元,乙商店的費(fèi)用為元.(3)每班配4副乒乓球拍和m(m>100)個(gè)乒乓球則甲商店的費(fèi)用為元,乙商店的費(fèi)用為元.(4)若該校只在一家商店購買,你認(rèn)為在哪家超市購買更劃算?24.對x,y定義一種新運(yùn)算T,規(guī)定:T(x,y)=ax+2by﹣1(其中a、b均為非零常數(shù)),這里等式右邊是通常的四則運(yùn)算,例如:T(0,1)=a?0+2b?1﹣1=2b﹣1.(1)已知T(1,﹣1)=﹣2,T(4,2)=3.①求a,b的值;②若關(guān)于m的不等式組恰好有2個(gè)整數(shù)解,求實(shí)數(shù)p的取值范圍;(2)若T(x,y)=T(y,x)對任意實(shí)數(shù)x,y都成立(這里T(x,y)和T(y,x)均有意義),則a,b應(yīng)滿足怎樣的關(guān)系式?25.某小區(qū)準(zhǔn)備新建個(gè)停車位,以解決小區(qū)停車難的問題.已知新建個(gè)地上停車位和個(gè)地下停車位共需萬元:新建個(gè)地上停車位和個(gè)地下停車位共需萬元,(1)該小區(qū)新建個(gè)地上停車位和個(gè)地下停車位各需多少萬元?(2)若該小區(qū)新建車位的投資金額超過萬元而不超過萬元,問共有幾種建造方案?(3)對(2)中的幾種建造方案中,哪種方案的投資最少?并求出最少投資金額.26.小語爸爸開了一家茶葉專賣店,包裝設(shè)計(jì)專業(yè)畢業(yè)的小語為爸爸設(shè)計(jì)了一款紙質(zhì)長方體茶葉包包裝盒(紙片厚度不計(jì)).如圖,陰影部分是裁剪掉的部分,沿圖中實(shí)線折疊做成的長方體紙盒的上下底面是正方形,有三處長方形形狀的“接口”用來折疊后粘貼或封蓋.(1)若小語用長,寬的長方形紙片,恰好能做成一個(gè)符合要求的包裝盒,盒高是盒底邊長的倍,三處“接口”的寬度相等.則該茶葉盒的容積是多少?(2)小語爸爸的茶葉專賣店以每盒元購進(jìn)一批茶葉,按進(jìn)價(jià)增加作為售價(jià),第一個(gè)月由于包裝粗糙,只售出不到一半但超過三分之一的量;第二個(gè)月采用了小語的包裝后,馬上售完了余下的茶葉,但每盒成本增加了元,售價(jià)仍不變,已知在整個(gè)買賣過程中共盈利元,求這批茶葉共進(jìn)了多少盒?27.(發(fā)現(xiàn)問題)已知,求的值.方法一:先解方程組,得出,的值,再代入,求出的值.方法二:將①②,求出的值.(提出問題)怎樣才能得到方法二呢?(分析問題)為了得到方法二,可以將①②,可得.令等式左邊,比較系數(shù)可得,求得.(解決問題)(1)請你選擇一種方法,求的值;(2)對于方程組利用方法二的思路,求的值;(遷移應(yīng)用)(3)已知,求的范圍.28.如圖,在平面直角坐標(biāo)系中,已知△ABC,點(diǎn)A的坐標(biāo)是(4,0),點(diǎn)B的坐標(biāo)是(2,3),點(diǎn)C在x軸的負(fù)半軸上,且AC=6.(1)直接寫出點(diǎn)C的坐標(biāo).(2)在y軸上是否存在點(diǎn)P,使得S△POB=S△ABC若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.(3)把點(diǎn)C往上平移3個(gè)單位得到點(diǎn)H,作射線CH,連接BH,點(diǎn)M在射線CH上運(yùn)動(不與點(diǎn)C、H重合).試探究∠HBM,∠BMA,∠MAC之間的數(shù)量關(guān)系,并證明你的結(jié)論.29.我區(qū)防汛指揮部在一河道的危險(xiǎn)地帶兩岸各安置一探照燈,便于夜間查看江水及兩岸河堤的情況.如圖1,燈光射線自順時(shí)針旋轉(zhuǎn)至便立即逆時(shí)針旋轉(zhuǎn)至,如此循環(huán)燈光射線自順時(shí)針旋轉(zhuǎn)至便立即逆時(shí)針旋轉(zhuǎn)至,如此循環(huán).兩燈交叉照射且不間斷巡視.若燈轉(zhuǎn)動的速度是度/秒,燈轉(zhuǎn)動的速度是度/秒,且,滿足.若這一帶江水兩岸河堤相互平行,即,且.根據(jù)相關(guān)信息,解答下列問題.(1)__________,__________.(2)若燈的光射線先轉(zhuǎn)動24秒,燈的光射線才開始轉(zhuǎn)動,在燈的光射線到達(dá)之前,燈轉(zhuǎn)動幾秒,兩燈的光射線互相平行?(3)如圖2,若兩燈同時(shí)開始轉(zhuǎn)動照射,在燈的光射線到達(dá)之前,若兩燈射出的光射線交于點(diǎn),過點(diǎn)作交于點(diǎn),則在轉(zhuǎn)動的過程中,與間的數(shù)量關(guān)系是否發(fā)生變化?若不變,請求出這兩角間的數(shù)量關(guān)系;若改變,請求出各角的取值范圍.30.對,定義一種新的運(yùn)算,規(guī)定:(其中).(1)若已知,,則_________.(2)已知,.求,的值;(3)在(2)問的基礎(chǔ)上,若關(guān)于正數(shù)的不等式組恰好有2個(gè)整數(shù)解,求的取值范圍.【參考答案】***試卷處理標(biāo)記,請不要刪除一、解答題1.(1)(3,0);(2)①P1;②或;(3)【分析】(1)根據(jù)“l(fā)型平移”的定義解決問題即可.(2)①畫出線段A1B1即可判斷.②根據(jù)定義求出t最大值,最小值即可判斷.(3)如圖2中,觀察圖象可知,當(dāng)B′在線段B′B″上時(shí),B'M的最小值保持不變,最小值為.【詳解】(1)將點(diǎn)A(2,1)進(jìn)行“l(fā)型平移”后的對應(yīng)點(diǎn)A'的坐標(biāo)為(3,0),故答案為:(3,0);(2)①如圖1中,觀察圖象可知,將線段AB進(jìn)行“﹣l型平移”后得到線段A'B',點(diǎn)P1(1.5,2),P2(2,3),P3(3,0)中,在線段A′B′上的點(diǎn)是P1,故答案為:P1;②若線段AB進(jìn)行“t型平移”后與坐標(biāo)軸有公共點(diǎn),則t的取值范圍是﹣4≤t≤﹣2或t=1.故答案為:﹣4≤t≤﹣2或t=1.(3)如圖2中,觀察圖象可知,當(dāng)B′在線段B′B″上時(shí),B'M的最小值保持不變,最小值為,此時(shí)1≤t≤3.故答案為:1≤t≤3.【點(diǎn)睛】本題屬于幾何變換綜合題,考查了平移變換,“t型平移”的定義等知識,解題的關(guān)鍵理解題意,靈活運(yùn)用所學(xué)知識解決問題,學(xué)會利用圖象法解決問題,屬于中考創(chuàng)新題型.2.(1);(2)的值為40°;(3).【分析】(1)過點(diǎn)O作OG∥AB,可得AB∥OG∥CD,利用平行線的性質(zhì)可求解;(2)過點(diǎn)M作MK∥AB,過點(diǎn)N作NH∥CD,由角平分線的定義可設(shè)∠BEM=∠OEM=x,∠CFN=∠OFN=y,由∠BEO+∠DFO=260°可求x-y=40°,進(jìn)而求解;(3)設(shè)直線FK與EG交于點(diǎn)H,F(xiàn)K與AB交于點(diǎn)K,根據(jù)平行線的性質(zhì)即三角形外角的性質(zhì)及,可得,結(jié)合,可得即可得關(guān)于n的方程,計(jì)算可求解n值.【詳解】證明:過點(diǎn)O作OG∥AB,∵AB∥CD,∴AB∥OG∥CD,∴∴即∵∠EOF=100°,∴∠;(2)解:過點(diǎn)M作MK∥AB,過點(diǎn)N作NH∥CD,∵EM平分∠BEO,F(xiàn)N平分∠CFO,設(shè)∵∴∴x-y=40°,∵M(jìn)K∥AB,NH∥CD,AB∥CD,∴AB∥MK∥NH∥CD,∴∴=x-y=40°,的值為40°;(3)如圖,設(shè)直線FK與EG交于點(diǎn)H,F(xiàn)K與AB交于點(diǎn)K,∵AB∥CD,∴∵∴∵∴即∵FK在∠DFO內(nèi),∴,∵∴∴即∴解得.經(jīng)檢驗(yàn),符合題意,故答案為:.【點(diǎn)睛】本題主要考查平行線的性質(zhì),角平分線的定義,靈活運(yùn)用平行線的性質(zhì)是解題的關(guān)鍵.3.(1)見解析;(2)10°;(3)【分析】(1)過點(diǎn)E作EF∥CD,根據(jù)平行線的性質(zhì),兩直線平行,內(nèi)錯(cuò)角相等,得出結(jié)合已知條件,得出即可證明;(2)過點(diǎn)E作HE∥CD,設(shè)由(1)得AB∥CD,則AB∥CD∥HE,由平行線的性質(zhì),得出再由平分,得出則,則可列出關(guān)于x和y的方程,即可求得x,即的度數(shù);(3)過點(diǎn)N作NP∥CD,過點(diǎn)M作QM∥CD,由(1)得AB∥CD,則NP∥CD∥AB∥QM,根據(jù)和,得出根據(jù)CD∥PN∥QM,DE∥NB,得出即根據(jù)NP∥AB,得出再由,得出由AB∥QM,得出因?yàn)?,代入的式子即可求出.【詳解】?)過點(diǎn)E作EF∥CD,如圖,∵EF∥CD,∴∴∵,∴∴EF∥AB,∴CD∥AB;(2)過點(diǎn)E作HE∥CD,如圖,設(shè)由(1)得AB∥CD,則AB∥CD∥HE,∴∴又∵平分,∴∴即解得:即;(3)過點(diǎn)N作NP∥CD,過點(diǎn)M作QM∥CD,如圖,由(1)得AB∥CD,則NP∥CD∥AB∥QM,∵NP∥CD,CD∥QM,∴,又∵,∴∵,∴∴又∵PN∥AB,∴∵,∴又∵AB∥QM,∴∴∴.【點(diǎn)睛】本題考查平行線的性質(zhì),角平分線的定義,解決問題的關(guān)鍵是作平行線構(gòu)造相等的角,利用兩直線平行,內(nèi)錯(cuò)角相等,同位角相等來計(jì)算和推導(dǎo)角之間的關(guān)系.4.(1)100;(2)75°;(3)n=3.【分析】(1)如圖:過O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OBH=360°,即可求出∠AOB;(2)如圖:分別延長AC、CD交GH于點(diǎn)E、F,先根據(jù)角平分線求得,再根據(jù)平行線的性質(zhì)得到;進(jìn)一步求得,,然后根據(jù)三角形外角的性質(zhì)解答即可;(3)設(shè)BF交MN于K,由∠NAO=116°,得∠MAO=64°,故∠MAE=,同理∠OBH=144°,∠HBF=n∠OBF,得∠FBH=,從而,又∠FKN=∠F+∠FAK,得,即可求n.【詳解】解:(1)如圖:過O作OP//MN,∵M(jìn)N//GHl∴MN//OP//GH∴∠NAO+∠POA=180°,∠POB+∠OBH=180°∴∠NAO+∠AOB+∠OBH=360°∵∠NAO=116°,∠OBH=144°∴∠AOB=360°-116°-144°=100°;(2)分別延長AC、CD交GH于點(diǎn)E、F,∵AC平分且,∴,又∵M(jìn)N//GH,∴;∵,∵BD平分,∴,又∵∴;∴;(3)設(shè)FB交MN于K,∵,則;∴∵,∴,,在△FAK中,,∴,∴.經(jīng)檢驗(yàn):是原方程的根,且符合題意.【點(diǎn)睛】本題主要考查平行線的性質(zhì)及應(yīng)用,正確作出輔助線、構(gòu)造平行線、再利用平行線性質(zhì)進(jìn)行求解是解答本題的關(guān)鍵.5.(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②見解析【分析】(1)根據(jù)鄰補(bǔ)角的定義和平行線的性質(zhì)解答;(2)①根據(jù)鄰補(bǔ)角的定義求出∠ABE,再根據(jù)兩直線平行,同位角相等可得∠1=∠ABE,根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ)求出∠BCG,然后根據(jù)周角等于360°計(jì)算即可得到∠2;②結(jié)合圖形,分AB、BC、AC三條邊與直尺垂直討論求解.【詳解】解:(1)∠1=180°-60°=120°,∠2=90°;故答案為:120,90;(2)①如圖2,∵∠ABC=60°,∴∠ABE=180°-60°-n°=120°-n°,∵DG∥EF,∴∠1=∠ABE=120°-n°,∠BCG=180°-∠CBF=180°-n°,∵∠ACB+∠BCG+∠2=360°,∴∠2=360°-∠ACB-∠BCG=360°-90°-(180°-n°)=90°+n°;②當(dāng)n=30°時(shí),∵∠ABC=60°,∴∠ABF=30°+60°=90°,AB⊥DG(EF);當(dāng)n=90°時(shí),∠C=∠CBF=90°,∴BC⊥DG(EF),AC⊥DE(GF);當(dāng)n=120°時(shí),∴AB⊥DE(GF).【點(diǎn)睛】本題考查了平行線角的計(jì)算,垂線的定義,主要利用了平行線的性質(zhì),直角三角形的性質(zhì),讀懂題目信息并準(zhǔn)確識圖是解題的關(guān)鍵.6.(1)49°,(2)44°,(3)∠OPQ=∠ORQ【分析】(1)根據(jù)∠OPA=∠QPB.可求出∠OPA的度數(shù);(2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度數(shù),轉(zhuǎn)化為(1)來解決問題;(3)由(2)推理可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,從而∠OPQ=∠ORQ.【詳解】解:(1)∵∠OPA=∠QPB,∠OPQ=82°,∴∠OPA=(180°-∠OPQ)×=(180°-82°)×=49°,(2)作PC∥m,∵m∥n,∴m∥PC∥n,∴∠AOP=∠OPC=43°,∠BQP=∠QPC=49°,∴∠OPQ=∠OPC+∠QPC=43°+49°=92°,∴∠OPA=(180°-∠OPQ)×=(180°-92°)×44°,(3)∠OPQ=∠ORQ.理由如下:由(2)可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,∵入射光線與平面鏡的夾角等于反射光線與平面鏡的夾角,∴∠AOP=∠DOR,∠BQP=∠RQC,∴∠OPQ=∠ORQ.【點(diǎn)睛】本題主要考查了平行線的性質(zhì)和入射角等于反射角的規(guī)定,解決本題的關(guān)鍵是注意問題的設(shè)置環(huán)環(huán)相扣、前為后用的設(shè)置目的.7.(1)a2=2,a3=-1,a4=(2)a2016?a2017?a2018=-1(3)a33+a66+a99+…+a9999=-1【分析】(1)將a1=代入中即可求出a2,再將a2代入求出a3,同樣求出a4即可.(2)從(1)的計(jì)算結(jié)果可以看出,從a1開始,每三個(gè)數(shù)一循環(huán),而2016÷3=672,則a2016=-1,a2017=,a2018=2然后計(jì)算a2016?a2017?a2018的值;(3)觀察可得a3、a6、a9、…a99,都等于-1,將-1代入,即可求出結(jié)果.【詳解】(1)將a1=,代入,得;將a2=2,代入,得;將a3=-1,代入,得.(2)根據(jù)(1)的計(jì)算結(jié)果,從a1開始,每三個(gè)數(shù)一循環(huán),而2016÷3=672,則a2016=-1,a2017=,a2018=2所以,a2016?a2017?a2018=(-1)××2=-1(3)觀察可得a3、a6、a9、…a99,都等于-1,將-1代入,a33+a66+a99+…+a9999=(-1)3+(-1)6+(-1)9+…+(-1)99=(-1)+1+(-1)+…(-1)=-1【點(diǎn)睛】此類問題考查了數(shù)字類的變化規(guī)律,解題的關(guān)鍵是要嚴(yán)格根據(jù)定義進(jìn)行解答,同時(shí)注意分析循環(huán)的規(guī)律.8.(1)210-1;(2);(3)9×210+1.【分析】(1)根據(jù)題目中材料可以得到用類比的方法得到1+2+22+23+…+29的值;(2)根據(jù)題目中材料可以得到用類比的方法得到1+5+52+53+54+…+5n的值.(3)根據(jù)題目中的信息,運(yùn)用類比的數(shù)學(xué)思想可以解答本題.【詳解】解:(1)設(shè)S=1+2+22+23+…+29,將等式兩邊同時(shí)乘以2得:2S=2+22+23+24+…+29+210,將下式減去上式得2S-S=210-1,即S=210-1,即1+2+22+23+…+29=210-1.故答案為210-1;(2)設(shè)S=1+5+52+53+54+…+5n,將等式兩邊同時(shí)乘以5得:5S=5+52+53+54+55+…+5n+5n+1,將下式減去上式得5S-S=5n+1-1,即S=,即1+5+52+53+54+…+5n=;(3)設(shè)S=1+2×2+3×22+4×23+…+9×28+10×29,將等式兩邊同時(shí)乘以2得:2S=2+2×22+3×23+4×24+…+9×29+10×210,將上式減去下式得-S=1+2+22+23+…+29+10×210,-S=210-1-10×210,S=9×210+1,即1+2×2+3×22+4×23+…+9×28+10×29=9×210+1.【點(diǎn)睛】本題考查有理數(shù)的混合運(yùn)算、數(shù)字的變化類,解題的關(guān)鍵是明確題意,發(fā)現(xiàn)數(shù)字的變化規(guī)律.9.(1)5;(2)5或1;(3)1+y-2x;(4)t1=3;t2=【分析】(1)根據(jù)題中的新運(yùn)算列出算式,計(jì)算即可得到結(jié)果;(2)根據(jù)題中的新運(yùn)算列出方程,解方程即可得到結(jié)果;(3)根據(jù)題中的新運(yùn)算列出代數(shù)式,根據(jù)數(shù)軸得出x、y的取值范圍進(jìn)行化簡即可;(4)根據(jù)A、B在數(shù)軸上的移動方向和速度可分別用代數(shù)式表示出數(shù)和,再根據(jù)(2)的解題思路即可得到結(jié)果.【詳解】解:(1);(2)依題意得:,化簡得:,所以或,解得:x=5或x=1;(3)由數(shù)軸可知:0<x<1,y<0,所以===(4)依題意得:數(shù)a=?1+t,b=3?t;因?yàn)椋?,化簡得:,解得:t=3或t=,所以當(dāng)時(shí),的值為3或.【點(diǎn)睛】本題主要考查了定義新運(yùn)算、有理數(shù)的混合運(yùn)算和解一元一次方程,根據(jù)定義新運(yùn)算列出關(guān)系式是解題的關(guān)鍵.10.(1)15;(2);(3).【分析】(1)先計(jì)算乘方,即可求出答案;(2)根據(jù)題目中的運(yùn)算法則進(jìn)行計(jì)算,即可求出答案;(3)根據(jù)題目中的運(yùn)算法則進(jìn)行計(jì)算,即可求出答案;【詳解】解:(1);故答案為:15;(2)設(shè)①,把等式①兩邊同時(shí)乘以5,得②,由②①,得:,∴,∴;(3)設(shè)①,把等式①乘以10,得:②,把①+②,得:,∴,∴,∴.【點(diǎn)睛】本題考查了數(shù)字的變化規(guī)律,熟練掌握運(yùn)算法則,熟練運(yùn)用有理數(shù)乘法,以及運(yùn)用消項(xiàng)的思想是解題的關(guān)鍵.11.(1)①5;②;(2)1;(3)16.【分析】(1)根據(jù)題中定義代入即可得出;(2)根據(jù),討論3和的兩種大小關(guān)系,進(jìn)行計(jì)算;(3)先判定A、B的大小關(guān)系,再進(jìn)行求解.【詳解】(1)根據(jù)題意:∵,∴,∵,∴.(2)∵,∴,①若,則,解得,②若,則,解得(不符合題意),∴.(3)∵,∴,∴,得,∴.【點(diǎn)睛】本題考查了一種新運(yùn)算,讀懂題意掌握新運(yùn)算并能正確化簡是解題的關(guān)鍵.12.(1)不是,是;(2)見解析;(3)432或456或840或864或888【分析】(1)根據(jù)等差數(shù)的定義判定即可;(2)設(shè)這個(gè)三位數(shù)是M,,根據(jù)等差數(shù)的定義可知,進(jìn)而得出即可.(3)根據(jù)等差數(shù)的定義以及24的倍數(shù)的數(shù)的特征可先求出a的值,再根據(jù)是8的倍數(shù)可確定c的值,又因?yàn)椋钥纱_定a、c為偶數(shù)時(shí)b才可取整數(shù)有意義,排除不符合條件的a、c值,再將符合條件的a、c代入求出b的值,即可求解.【詳解】解:(1)∵,∴148不是等差數(shù),∵,∴514335是等差數(shù);(2)設(shè)這個(gè)三位數(shù)是M,,∵,∴,∵,∴這個(gè)等差數(shù)是3的倍數(shù);(3)由(2)知,∵T是24的倍數(shù),∴是8的倍數(shù),∵2c是偶數(shù),∴只有當(dāng)35a也是偶數(shù)時(shí)才有可能是8的倍數(shù),∴或4或6或8,當(dāng)時(shí),,此時(shí)若,則,若,則,若,則,大于70又是8的倍數(shù)的最小數(shù)是72,之后是80,88當(dāng)時(shí)不符合題意;當(dāng)時(shí),,此時(shí)若,則,若,則,(144、152是8的倍數(shù)),當(dāng)時(shí),,此時(shí)若,則,若,則,(216、244是8的倍數(shù)),當(dāng)時(shí),,此時(shí)若,則,若,則,若,則,(280,288,296是8的倍數(shù)),∵,∴若a是偶數(shù),則c也是偶數(shù)時(shí)b才有意義,∴和是c是奇數(shù)均不符合題意,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,綜上,T為432或456或840或864或888.【點(diǎn)睛】本題考查新定義下的實(shí)數(shù)運(yùn)算、有理數(shù)混合運(yùn)算,整式的加減運(yùn)算,能夠結(jié)合倍數(shù)的特點(diǎn)及熟練掌握整數(shù)的奇偶性是解題關(guān)鍵.13.(1)a=-2,b=2;(2)P(0,-4)或(0,4);(3)①∠CAB+∠ODB=90°;②∠AED=45°.【分析】(1)根據(jù)非負(fù)數(shù)的性質(zhì)即可求得a、b的值;(2)先求得S△ABC=4,設(shè)P(0,t),根據(jù)S△OPC=OP×2=××2=4求得t值,即可求得點(diǎn)P的坐標(biāo);(3)①已知BD∥AC,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠CAB=∠OBD,由∠OBD+∠ODB=90°,即可得∠CAB+∠ODB=90°;②根據(jù)角平分線的定義及①中的結(jié)論,可求得∠3+∠4=45°;過點(diǎn)E作EF∥AC,即可得EF∥BD∥AC,根據(jù)平行線的性質(zhì)可得∠3=∠1,∠2=∠4,由此求得∠AED=∠1+∠2=∠4+∠3=45°.【詳解】(1)∵,∴a+2=0,b-2=0,∴a=-2,b=2;(2)∵a=-2,b=2,∴A(-2,0),C(2,2),∴S△ABC=AB?BC=×4×2=4;設(shè)P(0,t),∴S△OPC=OP×2=××2==4;∴t=4或t=-4,∴P(0,-4)或(0,4).(3)①∵BD∥AC,∴∠CAB=∠OBD,∵∠OBD+∠ODB=90°,∴∠CAB+∠ODB=90°;②∵AE,DE分別平分∠CAB,∠ODB,∴∠3=,∠4=,∵∠CAB+∠ODB=90°,∴∠3+∠4=+=45°,過點(diǎn)E作EF∥AC,∵BD∥AC,∴EF∥BD∥AC,∴∠3=∠1,∠2=∠4,∴∠AED=∠1+∠2=∠4+∠3=45°.【點(diǎn)睛】本題考查了坐標(biāo)與圖形性質(zhì),熟知非負(fù)數(shù)的性質(zhì)、三角形的面積公式及平行線的性質(zhì)是解決問題的關(guān)鍵.14.(1)150°;(2)∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′【分析】(1)先根據(jù)平行線的性質(zhì)得到∠AOE的度數(shù),再根據(jù)直角、周角的定義即可求得∠BOE的度數(shù);(2)如圖②,過O點(diǎn)作OF∥CD,根據(jù)平行線的判定和性質(zhì)可得∠OCD、∠BO′E′的數(shù)量關(guān)系;(3)由已知推出CP∥OB,得到∠AOB+∠PCO=180°,結(jié)合角平分線的定義可推出∠OCD=2∠PCO=360°-2∠AOB,根據(jù)(2)∠OCD+∠BO′E′=360°-∠AOB,進(jìn)而推出∠AOB=∠BO′E′.【詳解】解:(1)∵CD∥OE,∴∠AOE=∠OCD=120°,∴∠BOE=360°-∠AOE-∠AOB=360°-90°-120°=150°;(2)∠OCD+∠BO′E′=360°-α.證明:如圖②,過O點(diǎn)作OF∥CD,∵CD∥O′E′,∴OF∥O′E′,∴∠AOF=180°-∠OCD,∠BOF=∠E′O′O=180°-∠BO′E′,∴∠AOB=∠AOF+∠BOF=180°-∠OCD+180°-∠BO′E′=360°-(∠OCD+∠BO′E′)=α,∴∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′.證明:∵∠CPO′=90°,∴PO′⊥CP,∵PO′⊥OB,∴CP∥OB,∴∠PCO+∠AOB=180°,∴2∠PCO=360°-2∠AOB,∵CP是∠OCD的平分線,∴∠OCD=2∠PCO=360°-2∠AOB,∵由(2)知,∠OCD+∠BO′E′=360°-α=360°-∠AOB,∴360°-2∠AOB+∠BO′E′=360°-∠AOB,∴∠AOB=∠BO′E′.【點(diǎn)睛】此題考查了平行線的判定和性質(zhì),平移的性質(zhì),直角的定義,角平分線的定義,正確作出輔助線是解決問題的關(guān)鍵.15.(1),;(2);(3)【解析】【分析】(1)利用非負(fù)數(shù)的性質(zhì)即可解決問題;(2)利用三角形面積求法,由列方程組,求出點(diǎn)C坐標(biāo),進(jìn)而由△ACD面積求出D點(diǎn)坐標(biāo).(3)由平行線間距離相等得到,繼而求出E點(diǎn)坐標(biāo),同理求出F點(diǎn)坐標(biāo),再由GE=12求出G點(diǎn)坐標(biāo),根據(jù)求出PG的長即可求P點(diǎn)坐標(biāo).【詳解】解:(1),∴,,,,,,,(2)由∴,,,如圖1,連,作軸,軸,,即,,,而,,,,(3)如圖2:∵EF∥AB,∴,∴,即,,,,,,,,,,,,,,【點(diǎn)睛】本題考查的是二元一次方程的應(yīng)用、三角形的面積公式、坐標(biāo)與圖形的性質(zhì)、平移的性質(zhì),靈活運(yùn)用分情況討論思想、掌握平移規(guī)律是解題的關(guān)鍵.16.(1)在乙家批發(fā)更優(yōu)惠;(2)當(dāng)x=200時(shí)他選擇任何一家批發(fā)所花費(fèi)用一樣多;當(dāng)100<x<200時(shí),師傅應(yīng)選擇甲家批發(fā)商所花費(fèi)用更少;當(dāng)x>200時(shí),師傅應(yīng)選擇乙家批發(fā)商所花費(fèi)用更少.【分析】(1)分別求出在甲、乙兩家批發(fā)240千克蘋果所需費(fèi)用,比較后即可得出結(jié)論;(2)分兩種情況:①若100<x≤150時(shí),②若x>150時(shí),分別用含x的代數(shù)式表示出在甲、乙兩家批發(fā)x千克蘋果所需費(fèi)用,再比較大小,列出不等式,求出x的范圍,即可得到結(jié)論.【詳解】(1)在甲家批發(fā)所需費(fèi)用為:240×8×85%=1632(元),在乙家批發(fā)所需費(fèi)用為:50×8×95%+(150?50)×8×85%+(240?150)×8×75%=1600(元),∵1632>1600,∴在乙家批發(fā)更優(yōu)惠;(2)①若100<x≤150時(shí),在甲家批發(fā)所需費(fèi)用為:8×85%x=6.8x,在乙家批發(fā)所需費(fèi)用為:50×8×95%+(x?50)×8×85%=6.8x+40,∵6.8x<6.8x+40,∴師傅應(yīng)選擇甲家批發(fā)商所花費(fèi)用更少;②若x>150時(shí),在甲家批發(fā)所需費(fèi)用為:8×85%x=6.8x,在乙家批發(fā)所需費(fèi)用為:50×8×95%+(150?50)×8×85%+(x?150)×8×75%=6x+160,當(dāng)6.8x=6x+160時(shí),即x=200時(shí),師傅選擇兩家批發(fā)商所花費(fèi)用一樣多,當(dāng)6.8x>6x+160時(shí),即x>200時(shí),師傅應(yīng)選擇乙家批發(fā)商所花費(fèi)用更少,當(dāng)6.8x<6x+160時(shí),即150<x<200時(shí),師傅應(yīng)選擇甲家批發(fā)商所花費(fèi)用更少.綜上所得:當(dāng)x=200時(shí)他選擇任何一家批發(fā)所花費(fèi)用一樣多;當(dāng)100<x<200時(shí),師傅應(yīng)選擇甲家批發(fā)商所花費(fèi)用更少;當(dāng)x>200時(shí),師傅應(yīng)選擇乙家批發(fā)商所花費(fèi)用更少.【點(diǎn)睛】本題主要考查代數(shù)式,一元一次方程,一元一次不等式的綜合實(shí)際應(yīng)用,理清數(shù)量關(guān)系,列出代數(shù)式,不等式或方程,是解題的關(guān)鍵.17.(1)①1,4;3,0;2,﹣4;②2;(2)見解析;(3)t=1.2時(shí),P(0.6,0),t=2時(shí),P(﹣1,0).【分析】(1)①利用非負(fù)數(shù)的性質(zhì)求出a,b的值,可得結(jié)論.②利用三角形面積公式求解即可.(2)連接DH,根據(jù)△ODH的面積+△ADH的面積=△OAH的面積,構(gòu)建關(guān)系式,可得結(jié)論.(3)分兩種情形:①當(dāng)點(diǎn)P在線段OB上,②當(dāng)點(diǎn)P在BO的延長線上時(shí),分別利用面積關(guān)系,構(gòu)建方程,可得結(jié)論.【詳解】(1)解:①∵,又∵≥0,(b﹣3)2≥0,∴a=4,b=3,∴A(1,4),B(3,0),∵B是由A平移得到的,∴A向右平移2個(gè)單位,向下平移4個(gè)單位得到B,∴點(diǎn)C是由點(diǎn)O向右平移2個(gè)單位,向下平移4個(gè)單位得到的,∴C(2,﹣4),故答案為:1,4;3,0;2,﹣4.②△AOH的面積=×1×4=2,故答案為:2.(2)證明:如圖,連接DH.∵△ODH的面積+△ADH的面積=△OAH的面積,∴×1×n+×4×(1﹣m)=2,∴4m=n.(3)解:①當(dāng)點(diǎn)P在線段OB上,由三角形AOP與三角形COQ的面積相等得:OP·yA=OQ·xC,∴×(3﹣2t)×4=×2t,解得t=1.2.此時(shí)P(0.6,0).②當(dāng)點(diǎn)P在BO的延長線上時(shí),由三角形AOP與三角形COQ的面積相等得:OP·yA=OQ·xC,×(2t﹣3)×4=×2×t,解得t=2,此時(shí)P(﹣1,0),綜上所述,t=1.2時(shí),P(0.6,0),t=2時(shí),P(﹣1,0).【點(diǎn)睛】本題考查坐標(biāo)與圖形變化-平移,非負(fù)數(shù)的性質(zhì),三角形的面積等知識,解題的關(guān)鍵是學(xué)會利用參數(shù)構(gòu)建方程解決問題.18.(1)1或3;(2)∠APD=∠CDP+∠PAB或∠APD=∠PAB-∠CDP,理由見解析【分析】(1)由非負(fù)數(shù)的性質(zhì)求出a,b,得到AB的長,結(jié)合點(diǎn)C坐標(biāo)求出平行四邊形ABCD的面積,再根據(jù)的面積等于平行四邊形面積的,列出方程,解之即可;(2)分點(diǎn)P在線段OC上和點(diǎn)P在OC的延長線上,兩種情況,過P作PQ∥AB,利用平行線的性質(zhì)求解.【詳解】解:(1)∵,∴a=-4,b=3,即A(-4,0),B(3,0),∴AB=3-(-4)=7,又C(0,4),∴OC=4,∴平行四邊形ABCD的面積=4×7=28,由題意可知:PC=2t,則OP=,∵的面積等于平行四邊形面積的,∴,解得:t=1或t=3,(2)如圖,當(dāng)點(diǎn)P在線段OC上時(shí),過P作PQ∥AB,則PQ∥CD,∴∠CDP=∠DPQ,∠APQ=∠PAB,∴∠APD=∠DPQ+∠APQ=∠CDP+∠PAB;當(dāng)點(diǎn)P在OC的延長線上時(shí),過P作PQ∥AB,則PQ∥CD,∴∠CDP=∠DPQ,∠APQ=∠PAB,∴∠APD=∠APQ-∠DPQ=∠PAB-∠CDP.【點(diǎn)睛】本題考查了坐標(biāo)與圖形,平行線的性質(zhì),解題的關(guān)鍵是掌握坐標(biāo)和圖形的關(guān)系,將坐標(biāo)與線段長進(jìn)行轉(zhuǎn)化,同時(shí)適當(dāng)添加輔助線,構(gòu)造平行線.19.(1)白紙有100噸,作業(yè)本有90噸;(2)69520元【分析】(1)設(shè)白紙有噸,作業(yè)本有噸,根據(jù)共支出公路運(yùn)費(fèi)4200元,鐵路運(yùn)費(fèi)26280元.列出二元一次方程組,解之即可;(2)由銷售款(白紙的購進(jìn)款與運(yùn)輸費(fèi)的和),進(jìn)行計(jì)算即可.【詳解】解:(1)設(shè)白紙有噸,作業(yè)本有噸,由題意,得,整理得:,解得.答:白紙有100噸,作業(yè)本有90噸;(2)(元).答:這批作業(yè)本的銷售款比白紙的購進(jìn)款與運(yùn)輸費(fèi)的和多69520元.【點(diǎn)睛】本題考查了二元一次方程組的應(yīng)用,解題的關(guān)鍵是找準(zhǔn)等量關(guān)系,正確列出二元一次方程組.20.(1)豎式長方體鐵容器100個(gè),橫式長方體鐵容器538個(gè);(2)B;(3)19個(gè)【分析】(1)設(shè)可以加工豎式長方體鐵容器x個(gè),橫式長方體鐵容器y個(gè),根據(jù)加工的兩種長方體鐵容器共用了長方形鐵片2014張、正方形鐵片1176張,即可得出關(guān)于x,y的二元一次方程組,解之即可得出結(jié)論;(2)設(shè)豎式紙盒c個(gè),橫式紙盒d個(gè),由題意列出方程組可求解.(3)設(shè)做長方形鐵片的鐵板為m塊,做正方形鐵片的鐵板為n塊,由鐵板的總數(shù)量及所需長方形鐵片的數(shù)量為正方形鐵皮的2倍,即可得出關(guān)于m,n的二元一次方程組,解之即可得出m,n的值,取其整數(shù)部分再將剩余鐵板按一張鐵板裁出1個(gè)長方形鐵片和2個(gè)正方形鐵片處理,即可得出結(jié)論.【詳解】解:(1)設(shè)可以加工豎式長方體鐵容器x個(gè),橫式長方體鐵容器y個(gè),依題意,得:,解得:,答:可以加工豎式長方體鐵容器100個(gè),橫式長方體鐵容器538個(gè).(2)設(shè)豎式紙盒c個(gè),橫式紙盒d個(gè),根據(jù)題意得:,∴5c+5d=5(c+d)=a+b,∴a+b是5的倍數(shù),可能是2020,故選B;(3)設(shè)做長方形鐵片的鐵板為m塊,做正方形鐵片的鐵板為n塊,依題意,得:,解得:,∵在這35塊鐵板中,25塊做長方形鐵片可做25×3=75(張),9塊做正方形鐵片可做9×4=36(張),剩下1塊可裁出1張長方形鐵片和2張正方形鐵片,∴共做長方形鐵片75+1=76(張),正方形鐵片36+2=38(張),∴可做鐵盒76÷4=19(個(gè)).答:最多可以加工成19個(gè)鐵盒.【點(diǎn)睛】本題考查了二元一次方程組的應(yīng)用以及二元一次方程的應(yīng)用,解題的關(guān)鍵是:找準(zhǔn)等量關(guān)系,正確列出二元一次方程(組).21.(1)10.5;(2)12.5;(3)10.5,12.5,23;;30【分析】(1)畫出圖形,根據(jù)三角形的面積公式求解;(2)畫出圖形,利用割補(bǔ)法求解;(3)設(shè)S=am+bn+c,其中a,b,c為常數(shù),根據(jù)表中數(shù)據(jù)列方程組求出a,b,c,然后根據(jù)公式即可求出六邊形的面積.【詳解】(1)如圖1,的底為7,高為3,所以面積為,故答案為:10.5;(2)如圖2,,故答案為:12.5;(3)由(1)、(2)可填表格如下:形內(nèi)格點(diǎn)數(shù)m邊界格點(diǎn)數(shù)n格點(diǎn)多邊形面積S61110.5四邊形81112.5五邊形20823設(shè)S=am+bn+c,其中a,b為常數(shù),由題意得,解得,∴皮克公式為,∵六邊形中,m=27,n=8,∴六邊形的面積為=30.【點(diǎn)睛】本題考查了坐標(biāo)與圖形的性質(zhì),三角形的面積,三元一次方程組的應(yīng)用等知識,解題的關(guān)鍵是理解題意,靈活運(yùn)用所學(xué)知識解決問題.22.(1);(2);(3)或4.【分析】(1)先求出是二元一次方程組的解,然后代入A、B的坐標(biāo)即可解答;(2)先求出OC的長,分點(diǎn)P在線段OB上和OB的延長線上兩種情況,分別利用三角形面積公式計(jì)算即可;(3)分兩種情況解答:①當(dāng)點(diǎn)P在線段OB上時(shí),連接PQ,過點(diǎn)M作PM⊥AC交AC的延長線于M,可得OP=2CQ,構(gòu)建方程解答即可;②當(dāng)點(diǎn)P在BO的延長線上時(shí),同理可解.【詳解】解:(1)解二元一次方程組,得:∴A(6,7),B(-8,0);(2)①當(dāng)點(diǎn)P在線段OB上時(shí),BP=4t,OP=8-4t,∴②當(dāng)點(diǎn)P在OB延長線上時(shí),綜上所述;(3)①當(dāng)點(diǎn)P在線段OB上時(shí),如圖:連接PQ,過點(diǎn)M作PM⊥AC交AC的延長線于M,又;②當(dāng)在線段延長線上時(shí)同理可得:.綜上,滿足題意t的值為或4.【點(diǎn)睛】本題主要考查了三角形的面積、二元一次方程組等知識點(diǎn),學(xué)會用分類討論的思想思考問題以及利用面積法解決線段之間的關(guān)系成為解答本題的關(guān)鍵.23.(1)每副乒乓球拍單價(jià)為50元,每個(gè)乒乓球的單價(jià)為1元;(2)4000元,4320元;(3)3200+20m,3600+18m;(4)若甲商店花錢少,則3200+20m<3600+18m;解得m<200;若乙商店花費(fèi)少,則3200+20m>3600+18m,解得m>200;若甲商店和乙商店一樣多時(shí),則3200+20m=3600+18m,解得m=200;綜上所述100<m<200時(shí)甲商店優(yōu)惠m>200時(shí)乙商店優(yōu)惠m=200時(shí)兩家商店一樣【分析】(1)設(shè)每副乒乓球拍單價(jià)為x元,每個(gè)乒乓球的單價(jià)為y元.根據(jù)題意列出二元一次方程組,解答即可;(2)利用(1)中求得的價(jià)格即可解答;(3)分別用含m的代數(shù)式表示在甲、乙兩家商店購買所花的費(fèi)用即可;(4)利用(3)求得的代數(shù)式,進(jìn)行分類討論即可.【詳解】解:(1)設(shè)每副乒乓球拍單價(jià)為x元,每個(gè)乒乓球的單價(jià)為y元.由題意可知解得答:每副乒乓球拍單價(jià)為50元,每個(gè)乒乓球的單價(jià)為1元.(2)甲商店:(元);乙商店:(元)故答案為:4000元;4320元;(3)在甲商店購買的費(fèi)用為:在乙商店購買的費(fèi)用為:(4)若甲商店花錢少,則3200+20m<3600+18m解得m<200若乙商店花費(fèi)少,則3200+20m>3600+18m,解得m>200,若甲商店和乙商店一樣多時(shí),則3200+20m=3600+18m,解得m=200綜上所述100<m<200時(shí)甲商店優(yōu)惠m>200時(shí)乙商店優(yōu)惠m=200時(shí)兩家商店一樣.【點(diǎn)睛】本題考查了二元一次方程組的應(yīng)用以及方案的選擇,審清題意,列出方程組是解題關(guān)鍵.24.(1)①a=1,b=3;②-2≤p<-;(2)a=2b.【分析】(1)①按題意的運(yùn)算可得方程組,即可求得a、b的值;②按題意的運(yùn)算可得不等式組,即可求得p的取值范圍;(2)由題意可得ax+2by-1=ay+2bx-1,從而可得a="2b";【詳解】(1)①由題意可得,解得;②由題意得,解得,因?yàn)樵坏仁浇M有2個(gè)整數(shù)解,所以,所以;(2)T(x,y)="ax+2by-1,"T(y,x)="ay+2bx-1",所以ax+2by-1=ay+2bx-1,所以(a-2ba)x-(a-2b)y=0,(a-2b)(x-y)=0,所以a=2b25.(1)新建一個(gè)地上停車位需0.1萬元,新建一個(gè)地下停車位需0.5萬元;(2)一共2種建造方案;(3)當(dāng)?shù)厣辖?9個(gè)車位地下建21個(gè)車位投資最少,金額為14.4萬元.【分析】(1)設(shè)新建一個(gè)地上停車位需x萬元,新建一個(gè)地下停車位需y萬元,根據(jù)等量關(guān)系可列出方程組,解出即可得出答案.(2)設(shè)新建地上停車位m個(gè),則地下停車位(60-m)個(gè),根據(jù)投資金額超過14萬元而不超過15萬元,可得出不等式組,解出即可得出答案.(3)將m=38和m=39分別求得投資金額,然后比較大小即可得到答案.【詳解】解:(1)設(shè)新建一個(gè)地上停車位需萬元,新建一個(gè)地下停車位需萬元,由題意得:,解得,故新建一個(gè)地上停車位需萬元,新建一個(gè)地下停車位需萬元.(2)設(shè)新建個(gè)地上停車位,由題意得:,解得,因?yàn)闉檎麛?shù),所以或,對應(yīng)的或,故一共種建造方案.(3)當(dāng)時(shí),投資(萬
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度虛擬現(xiàn)實(shí)內(nèi)容制作與版權(quán)授權(quán)合同3篇
- 2025年度瓷磚鋪設(shè)與智能照明系統(tǒng)配套合同3篇
- 2025年度汽車融資租賃合同示范文本8篇
- 二零二五年度教育培訓(xùn)機(jī)構(gòu)學(xué)生資助及獎學(xué)金發(fā)放合同4篇
- 2025年度個(gè)人信用卡透支合同范本(二零二五年度)
- 2025年度電梯安全應(yīng)急救援物資儲備與供應(yīng)合同4篇
- 二零二五年度臨時(shí)工資料員綜合服務(wù)聘用合同2篇
- 基于區(qū)塊鏈的跨域數(shù)據(jù)溯源技術(shù)研究
- 2025年度廚房裝修工程噪音控制合同4篇
- 二零二五年度車位租賃糾紛調(diào)解與理賠服務(wù)合同4篇
- 2025-2030年中國陶瓷電容器行業(yè)運(yùn)營狀況與發(fā)展前景分析報(bào)告
- 讓學(xué)生看見你的愛
- 12123交管學(xué)法減分練習(xí)題及答案二(帶圖文通用版)
- 銷售禮盒營銷方案
- 南潯至臨安公路(南潯至練市段)公路工程環(huán)境影響報(bào)告
- 初中數(shù)學(xué)校本教材(完整版)
- 重慶市銅梁區(qū)2024屆數(shù)學(xué)八上期末檢測試題含解析
- 中央導(dǎo)管相關(guān)血流感染防控
- 光的偏振和晶體光學(xué)基礎(chǔ)課件
- 中科大光學(xué)講義08光的偏振
- 黑布林英語閱讀《小婦人》-中英伴讀
評論
0/150
提交評論