咸陽(yáng)市重點(diǎn)中學(xué)2023-2024學(xué)年高二上數(shù)學(xué)期末經(jīng)典試題含解析_第1頁(yè)
咸陽(yáng)市重點(diǎn)中學(xué)2023-2024學(xué)年高二上數(shù)學(xué)期末經(jīng)典試題含解析_第2頁(yè)
咸陽(yáng)市重點(diǎn)中學(xué)2023-2024學(xué)年高二上數(shù)學(xué)期末經(jīng)典試題含解析_第3頁(yè)
咸陽(yáng)市重點(diǎn)中學(xué)2023-2024學(xué)年高二上數(shù)學(xué)期末經(jīng)典試題含解析_第4頁(yè)
咸陽(yáng)市重點(diǎn)中學(xué)2023-2024學(xué)年高二上數(shù)學(xué)期末經(jīng)典試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

咸陽(yáng)市重點(diǎn)中學(xué)2023-2024學(xué)年高二上數(shù)學(xué)期末經(jīng)典試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.“”是“方程表示焦點(diǎn)在x軸上的橢圓”的()A.充要條件 B.必要而不充分條件C.充分而不必要條件 D.既不充分也不必要條件2.若展開式的二項(xiàng)式系數(shù)之和為,則展開式的常數(shù)項(xiàng)為()A. B.C. D.3.若構(gòu)成空間的一個(gè)基底,則下列向量能構(gòu)成空間的一個(gè)基底的是()A.,, B.,,C.,, D.,,4.七巧板是中國(guó)古代勞動(dòng)人民發(fā)明的一種傳統(tǒng)智力玩具,它由五塊等腰直角三角形、一塊正方形和一塊平行四邊形共七塊板組成如圖是一個(gè)用七巧板拼成的正方形,若在此正方形中任取一點(diǎn),則此點(diǎn)取自陰影部分的概率為()A. B.C. D.5.經(jīng)過(guò)點(diǎn)且圓心是兩直線與的交點(diǎn)的圓的方程為()A. B.C. D.6.已知圓:,點(diǎn),則點(diǎn)到圓上點(diǎn)的最小距離為()A.1 B.2C. D.7.在區(qū)間內(nèi)隨機(jī)取一個(gè)數(shù),則方程表示焦點(diǎn)在軸上的橢圓的概率是A. B.C. D.8.已知平面法向量為,,則直線與平面的位置關(guān)系為A. B.C.與相交但不垂直 D.9.函數(shù)的最小值是()A.2 B.4C.5 D.610.拋物線上點(diǎn)的橫坐標(biāo)為4,則到拋物線焦點(diǎn)的距離等于()A.12 B.10C.8 D.611.已知過(guò)點(diǎn)A(a,0)作曲線C:y=x?ex的切線有且僅有兩條,則實(shí)數(shù)a的取值范圍是()A.(﹣∞,﹣4)∪(0,+∞) B.(0,+∞)C.(﹣∞,﹣1)∪(1,+∞) D.(﹣∞,﹣1)12.等差數(shù)列中,已知,則()A.36 B.27C.18 D.9二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列的各項(xiàng)均為正數(shù),記為的前n項(xiàng)和,從下面①②③中選取兩個(gè)作為條件,證明另外一個(gè)成立①數(shù)列是等差數(shù)列:②數(shù)列是等差數(shù)列;③注:若選擇不同的組合分別解答,則按第一個(gè)解答計(jì)分14.在正方體中,,,P,F(xiàn)分別是線段,的中點(diǎn),則點(diǎn)P到直線EF的距離是___________.15.已知,分別是雙曲線的左、右焦點(diǎn),P是其一條漸近線上的一點(diǎn),且以為直徑的圓經(jīng)過(guò)點(diǎn)P,則的面積為___________.16.已知空間向量,,若,則______三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知圓C經(jīng)過(guò)、兩點(diǎn),且圓心在直線上(1)求圓C的方程;(2)若直線經(jīng)過(guò)點(diǎn)且與圓C相切,求直線的方程18.(12分)為了謳歌中華民族實(shí)現(xiàn)偉大復(fù)興的奮斗歷程,增進(jìn)學(xué)生對(duì)中國(guó)共產(chǎn)黨的熱愛,某學(xué)校舉辦了一場(chǎng)黨史競(jìng)賽活動(dòng),共有名學(xué)生參加了此次競(jìng)賽活動(dòng).為了解本次競(jìng)賽活動(dòng)的成績(jī),從中抽取了名學(xué)生的得分(得分均為整數(shù),滿分為分)進(jìn)行統(tǒng)計(jì),所有學(xué)生的得分都不低于分,將這名學(xué)生的得分進(jìn)行分組,第一組,第二組,第三組,第四組(單位:分),得到如下的頻率分布直方圖(1)求圖中的值,估計(jì)此次競(jìng)賽活動(dòng)學(xué)生得分的中位數(shù);(2)根據(jù)頻率分布直方圖,估計(jì)此次競(jìng)賽活動(dòng)得分的平均值.若對(duì)得分不低于平均值的同學(xué)進(jìn)行獎(jiǎng)勵(lì),請(qǐng)估計(jì)在參賽的名學(xué)生中有多少名學(xué)生獲獎(jiǎng)19.(12分)已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍且經(jīng)過(guò)點(diǎn)M(2,1),平行于OM的直線在y軸上的截距為m,交橢圓于A,B兩個(gè)不同點(diǎn).(Ⅰ)求橢圓的方程;(Ⅱ)求m的取值范圍;(Ⅲ)求證直線MA,MB與x軸始終圍成一個(gè)等腰三角形.20.(12分)已知點(diǎn)是拋物線C:上的點(diǎn),F(xiàn)為拋物線的焦點(diǎn),且,直線l:與拋物線C相交于不同的兩點(diǎn)A,B.(1)求拋物線C的方程;(2)若,求k的值.21.(12分)已知圓M經(jīng)過(guò)點(diǎn)F(2,0),且與直線x=-2相切.(1)求圓心M的軌跡C的方程;(2)過(guò)點(diǎn)(-1,0)的直線l與曲線C交于A,B兩點(diǎn),若,求直線l的斜率k的取值范圍.22.(10分)已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,長(zhǎng)軸長(zhǎng)為4,且點(diǎn)在橢圓上(1)經(jīng)過(guò)點(diǎn)M(1,)作一直線交橢圓于AB兩點(diǎn),若點(diǎn)M為線段AB的中點(diǎn),求直線的斜率;(2)設(shè)橢圓C的上頂點(diǎn)為P,設(shè)不經(jīng)過(guò)點(diǎn)P的直線與橢圓C交于C,D兩點(diǎn),且,求證:直線過(guò)定點(diǎn)

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】由橢圓的標(biāo)準(zhǔn)方程結(jié)合充分必要條件的定義即得.【詳解】若,則方程表示焦點(diǎn)在軸上的橢圓;反之,若方程表示焦點(diǎn)在軸上的橢圓,則;所以“”是“方程表示焦點(diǎn)在x軸上的橢圓”的充要條件.故選:A.2、C【解析】利用二項(xiàng)式系數(shù)的性質(zhì)求得的值,再利用二項(xiàng)式展開式的通項(xiàng)公式,求得結(jié)果即可.【詳解】解:因?yàn)檎归_式的二項(xiàng)式系數(shù)之和為,則,所以,令,求得,所以展開式的常數(shù)項(xiàng)為.故選:C.3、B【解析】由空間向量?jī)?nèi)容知,構(gòu)成基底的三個(gè)向量不共面,對(duì)選項(xiàng)逐一分析【詳解】對(duì)于A:,因此A不滿足題意;對(duì)于B:根據(jù)題意知道,,不共面,而和顯然位于向量和向量所成平面內(nèi),與向量不共面,因此B正確;對(duì)于C:,故C不滿足題意;對(duì)于D:顯然有,選項(xiàng)D不滿足題意.故選:B4、D【解析】設(shè)正方形的邊長(zhǎng)為,計(jì)算出陰影部分區(qū)域的面積和正方形區(qū)域的面積,然后利用幾何概型的概率公式計(jì)算出所求事件的概率.【詳解】設(shè)大正方形的邊長(zhǎng)為,則面積為,陰影部分由一個(gè)大等腰直角三角形和一個(gè)梯形組成大等腰直角三角形的面積為,梯形的上底為,下底為,高為,面積為,故所求概率故選:D.5、B【解析】求出圓心坐標(biāo)和半徑后,直接寫出圓的標(biāo)準(zhǔn)方程.【詳解】由得,即所求圓的圓心坐標(biāo)為.由該圓過(guò)點(diǎn),得其半徑為1,故圓的方程為.故選:B.【點(diǎn)睛】本題考查了圓的標(biāo)準(zhǔn)方程,屬于基礎(chǔ)題.6、C【解析】寫出圓的圓心和半徑,求出距離的最小值,再結(jié)合圓外一點(diǎn)到圓上點(diǎn)的距離最小值的方法即可求解.【詳解】由圓:,得圓,半徑為,所以,所以點(diǎn)到圓上點(diǎn)的最小距離為.故選:C.7、D【解析】若方程表示焦點(diǎn)在軸上的橢圓,則,解得,,故方程表示焦點(diǎn)在軸上的橢圓的概率是,故選D.8、A【解析】.本題選擇A選項(xiàng).9、C【解析】結(jié)合基本不等式求得所求的最小值.【詳解】,,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.故選:C10、C【解析】根據(jù)焦半徑公式即可求出【詳解】因?yàn)?,所以,所以故選:C11、A【解析】設(shè)出切點(diǎn),對(duì)函數(shù)求導(dǎo)得到切點(diǎn)處的斜率,由點(diǎn)斜式得到切線方程,化簡(jiǎn)為,整理得到方程有兩個(gè)解即可,解出不等式即可.【詳解】設(shè)切點(diǎn)為,,,則切線方程為:,切線過(guò)點(diǎn)代入得:,,即方程有兩個(gè)解,則有或.故答案為:A.【點(diǎn)睛】這個(gè)題目考查了函數(shù)的導(dǎo)函數(shù)的求法,以及過(guò)某一點(diǎn)的切線方程的求法,其中應(yīng)用到導(dǎo)數(shù)的幾何意義,一般過(guò)某一點(diǎn)求切線方程的步驟為:一:設(shè)切點(diǎn),求導(dǎo)并且表示在切點(diǎn)處的斜率;二:根據(jù)點(diǎn)斜式寫切點(diǎn)處的切線方程;三:將所過(guò)的點(diǎn)代入切線方程,求出切點(diǎn)坐標(biāo);四:將切點(diǎn)代入切線方程,得到具體的表達(dá)式.12、B【解析】直接利用等差數(shù)列的求和公式及等差數(shù)列的性質(zhì)求解.【詳解】解:由題得.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、證明過(guò)程見解析【解析】選①②作條件證明③時(shí),可設(shè)出,結(jié)合的關(guān)系求出,利用是等差數(shù)列可證;也可分別設(shè)出公差,寫出各自的通項(xiàng)公式后利用兩者的關(guān)系,對(duì)照系數(shù),得到等量關(guān)系,進(jìn)行證明.選①③作條件證明②時(shí),根據(jù)等差數(shù)列的求和公式表示出,結(jié)合等差數(shù)列定義可證;選②③作條件證明①時(shí),設(shè)出,結(jié)合的關(guān)系求出,根據(jù)可求,然后可證是等差數(shù)列;也可利用前兩項(xiàng)的差求出公差,然后求出通項(xiàng)公式,進(jìn)而證明出結(jié)論.【詳解】選①②作條件證明③:[方法一]:設(shè),則,當(dāng)時(shí),;當(dāng)時(shí),;因?yàn)橐彩堑炔顢?shù)列,所以,解得;所以,,故.[方法二]:設(shè)等差數(shù)列的公差為d,等差數(shù)列的公差為,則,將代入,化簡(jiǎn)得對(duì)于恒成立則有,解得.所以選①③作條件證明②:因?yàn)椋堑炔顢?shù)列,所以公差,所以,即,因?yàn)椋允堑炔顢?shù)列.選②③作條件證明①:[方法一]:設(shè),則,當(dāng)時(shí),;當(dāng)時(shí),;因?yàn)?,所以,解得或;?dāng)時(shí),,當(dāng)時(shí),滿足等差數(shù)列的定義,此時(shí)為等差數(shù)列;當(dāng)時(shí),,不合題意,舍去.綜上可知為等差數(shù)列.[方法二]【最優(yōu)解】:因?yàn)?,所以,,因?yàn)橐矠榈炔顢?shù)列,所以公差,所以,故,當(dāng)時(shí),,當(dāng)時(shí),滿足上式,故的通項(xiàng)公式為,所以,,符合題意.【整體點(diǎn)評(píng)】這類題型在解答題后可證是等差數(shù)列;法二:利用是等差數(shù)列即前兩項(xiàng)的差求出公差,然后求出的通項(xiàng)公式,利用,求出的通項(xiàng)公式,進(jìn)而證明出結(jié)論.14、【解析】以A為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,利用向量法即可求解點(diǎn)P到直線EF的距離.【詳解】解:如圖,以A為坐標(biāo)原點(diǎn),,,的方向分別為x,y,z軸的正方向,建立空間直角坐標(biāo)系,因?yàn)?,所以,,,所以,,所以點(diǎn)P到直線EF的距離.故答案為:.15、【解析】先得出漸近線方程和圓的方程,然后解出點(diǎn)P的縱坐標(biāo),進(jìn)而求出面積.【詳解】由題意,漸近線方程為:,,圓的方程為:,聯(lián)立:,所以.故答案為:.16、7【解析】根據(jù)題意,結(jié)合空間向量的坐標(biāo)運(yùn)算,即可求解.【詳解】根據(jù)題意,易知,因?yàn)?,所以,即,解得故答案為?三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)【解析】(1)根據(jù)圓心在弦的垂直平分線上,先求出弦的垂直平分線的方程與聯(lián)立可求得圓心坐標(biāo),再用兩點(diǎn)間的距離公式求得半徑,進(jìn)而求得圓的方程;(2)當(dāng)直線斜率不存在時(shí),與圓相切,方程為;當(dāng)直線斜率存在時(shí),設(shè)斜率為,寫出其點(diǎn)斜式方程,利用圓心到直線的距離等于半徑建立方程求解出的值.試題解析:(1)依題意知線段的中點(diǎn)坐標(biāo)是,直線的斜率為,故線段的中垂線方程是即,解方程組得,即圓心的坐標(biāo)為,圓的半徑,故圓的方程是(2)若直線斜率不存在,則直線方程是,與圓相離,不合題意;若直線斜率存在,可設(shè)直線方程是,即,因?yàn)橹本€與圓相切,所以有,解得或所以直線的方程是或.18、(1),中位數(shù)為;(2)得分的平均值為,估計(jì)有260名學(xué)生獲獎(jiǎng).【解析】(1)根據(jù)給定的頻率分布直方圖,利用各小矩形面積和為1計(jì)算得值;再由在中位數(shù)兩側(cè)所對(duì)小矩形面積相等即可計(jì)算得解.(2)由頻率分布直方圖求平均數(shù)的方法求出得分平均值即可估計(jì);再求出不低于平均分的頻率即可估計(jì)獲獎(jiǎng)人數(shù).【小問(wèn)1詳解】由頻率分布直方圖知:,解得,設(shè)此次競(jìng)賽活動(dòng)學(xué)生得分的中位數(shù)為,因數(shù)據(jù)落在內(nèi)的頻率為0.4,落在內(nèi)的頻率為0.8,從而可得,由得:,所以,估計(jì)此次競(jìng)賽活動(dòng)學(xué)生得分的中位數(shù)為.【小問(wèn)2詳解】由頻率分布直方圖及(1)知:數(shù)據(jù)落在,,,的頻率分別為,,此次競(jìng)賽活動(dòng)學(xué)生得分不低于82的頻率為,則,所以估計(jì)此次競(jìng)賽活動(dòng)得分的平均值為,在參賽的名學(xué)生中估計(jì)有260名學(xué)生獲獎(jiǎng).19、(Ⅰ);(Ⅱ)且;(Ⅲ)證明見解析.【解析】(Ⅰ)設(shè)出橢圓方程,根據(jù)題意得出關(guān)于的方程組,從而求得橢圓的方程;(Ⅱ)根據(jù)題意設(shè)出直線方程,并與橢圓方程聯(lián)立消元,根據(jù)直線與橢圓方程有兩個(gè)不同交點(diǎn),利用即可求出m取值范圍;(Ⅲ)設(shè)直線MA,MB的斜率分別為k1,k2,根據(jù)題意把所證問(wèn)題轉(zhuǎn)化為證明k1+k2=0即可.【詳解】(1)設(shè)橢圓方程為,由題意可得,解得,∴橢圓方程為;(Ⅱ)∵直線l平行于OM,且在y軸上的截距為m,,所以設(shè)直線的方程為,由消元,得∵直線l與橢圓交于A,B兩個(gè)不同點(diǎn),所以,解得,所以m的取值范圍為.(Ⅲ)設(shè)直線MA,MB的斜率分別為k1,k2,只需證明k1+k2=0即可,設(shè),由(Ⅱ)可知,則,由,而,,故直線MA,MB與x軸始終圍成一個(gè)等腰三角形.20、(1);(2)1或.【解析】(1)根據(jù)拋物線的定義,即可求得p值;(2)由過(guò)拋物線焦點(diǎn)的直線的性質(zhì),結(jié)合拋物線的定義,即可求出弦長(zhǎng)AB【詳解】(1)拋物線C:的準(zhǔn)線為,由得:,得.所以拋物線的方程為.(2)設(shè),,由,,∴,∵直線l經(jīng)過(guò)拋物線C的焦點(diǎn)F,∴解得:,所以k的值為1或.【點(diǎn)睛】考核拋物線的定義及過(guò)焦點(diǎn)弦的求法21、(1);(2).【解析】(1)設(shè)圓心,軌跡兩點(diǎn)的距離公式列出方程,整理方程即可;(2)設(shè)直線l的方程和點(diǎn)A、B的坐標(biāo),直線方程聯(lián)立拋物線方程,消去x得出關(guān)于y的一元二次方程,結(jié)合根的判別式和韋達(dá)定理表示出弦,進(jìn)而列出不等式,解之即可.【小問(wèn)1詳解】設(shè)圓心,由題意知,,整理,得,即圓心M的軌跡C方程為:;【小問(wèn)2詳解】由題意知,過(guò)點(diǎn)(-1,0)的直線l與拋物線C相交于點(diǎn)A、B,所以直線l的斜率存在且不為0,設(shè)直線,點(diǎn),則,消去x,得,或,,同理可得,所以,即,由,得,解得,綜上,或,所以或,即直線l的斜率的取值范圍為.22、(1)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論