人教七年級(jí)下冊(cè)數(shù)學(xué)期末解答題壓軸題含答案_第1頁
人教七年級(jí)下冊(cè)數(shù)學(xué)期末解答題壓軸題含答案_第2頁
人教七年級(jí)下冊(cè)數(shù)學(xué)期末解答題壓軸題含答案_第3頁
人教七年級(jí)下冊(cè)數(shù)學(xué)期末解答題壓軸題含答案_第4頁
人教七年級(jí)下冊(cè)數(shù)學(xué)期末解答題壓軸題含答案_第5頁
已閱讀5頁,還剩31頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

人教七年級(jí)下冊(cè)數(shù)學(xué)期末解答題壓軸題含答案一、解答題1.如圖,用兩個(gè)面積為的小正方形紙片剪拼成一個(gè)大的正方形.(1)大正方形的邊長(zhǎng)是________;(2)請(qǐng)你探究是否能將此大正方形紙片沿著邊的方向裁出一個(gè)面積為的長(zhǎng)方形紙片,使它的長(zhǎng)寬之比為,若能,求出這個(gè)長(zhǎng)方形紙片的長(zhǎng)和寬,若不能,請(qǐng)說明理由.2.(1)小麗計(jì)劃在母親節(jié)那天送份禮物媽媽,特設(shè)計(jì)一個(gè)表面積為12dm2的正方體紙盒,則這個(gè)正方體的棱長(zhǎng)是.(2)為了增加小區(qū)的綠化面積,幸福公園準(zhǔn)備修建一個(gè)面積121πm2的草坪,草坪周圍用籬笆圍繞.現(xiàn)從對(duì)稱美的角度考慮有甲,乙兩種方案,甲方案:建成正方形;乙方案:建成圓形的.如果從節(jié)省籬笆費(fèi)用的角度考慮,你會(huì)選擇哪種方案?請(qǐng)說明理由;(3)在(2)的方案中,審批時(shí)發(fā)現(xiàn)修如此大的草坪,目的是親近自然,若按上方案就沒達(dá)到目的,因此建議用如圖的設(shè)計(jì)方案:正方形里修三條小路,三條小路的寬度是一樣,這樣草坪的實(shí)際面積就減少了21πm2,請(qǐng)你根據(jù)此方案求出各小路的寬度(π取整數(shù)).3.教材中的探究:如圖,把兩個(gè)邊長(zhǎng)為1的小正方形沿對(duì)角線剪開,用所得到的4個(gè)直角三角形拼成一個(gè)面積為2的大正方形.由此,得到了一種能在數(shù)軸上畫出無理數(shù)對(duì)應(yīng)點(diǎn)的方法(數(shù)軸的單位長(zhǎng)度為1).(1)閱讀理解:圖1中大正方形的邊長(zhǎng)為________,圖2中點(diǎn)A表示的數(shù)為________;(2)遷移應(yīng)用:請(qǐng)你參照上面的方法,把5個(gè)小正方形按圖3位置擺放,并將其進(jìn)行裁剪,拼成一個(gè)大正方形.①請(qǐng)?jiān)趫D3中畫出裁剪線,并在圖3中畫出所拼得的大正方形的示意圖.②利用①中的成果,在圖4的數(shù)軸上分別標(biāo)出表示數(shù)-0.5以及的點(diǎn),并比較它們的大?。?.小麗想用一塊面積為400cm2的正方形紙片,沿著邊的方向裁處一塊面積為300cm2的長(zhǎng)方形紙片.(1)請(qǐng)幫小麗設(shè)計(jì)一種可行的裁剪方案;(2)若使長(zhǎng)方形的長(zhǎng)寬之比為3:2,小麗能用這塊紙片裁處符合要求的紙片嗎?若能,請(qǐng)幫小麗設(shè)計(jì)一種裁剪方案,若不能,請(qǐng)簡(jiǎn)要說明理由.5.小麗想用一塊面積為的正方形紙片,如圖所示,沿著邊的方向裁出一塊面積為的長(zhǎng)方形紙片,使它的長(zhǎng)是寬的2倍.她不知能否裁得出來,正在發(fā)愁.小明見了說:“別發(fā)愁,一定能用一塊面積大的紙片裁出一塊面積小的紙片.”你同意小明的說法嗎?你認(rèn)為小麗能用這塊紙片裁出符合要求的紙片嗎?為什么?二、解答題6.已知:直線AB∥CD,直線MN分別交AB、CD于點(diǎn)E、F,作射線EG平分∠BEF交CD于G,過點(diǎn)F作FH⊥MN交EG于H.(1)當(dāng)點(diǎn)H在線段EG上時(shí),如圖1①當(dāng)∠BEG=時(shí),則∠HFG=.②猜想并證明:∠BEG與∠HFG之間的數(shù)量關(guān)系.(2)當(dāng)點(diǎn)H在線段EG的延長(zhǎng)線上時(shí),請(qǐng)先在圖2中補(bǔ)全圖形,猜想并證明:∠BEG與∠HFG之間的數(shù)量關(guān)系.7.如圖1,點(diǎn)在直線、之間,且.(1)求證:;(2)若點(diǎn)是直線上的一點(diǎn),且,平分交直線于點(diǎn),若,求的度數(shù);(3)如圖3,點(diǎn)是直線、外一點(diǎn),且滿足,,與交于點(diǎn).已知,且,則的度數(shù)為______(請(qǐng)直接寫出答案,用含的式子表示).8.已知,AB∥CD,點(diǎn)E在CD上,點(diǎn)G,F(xiàn)在AB上,點(diǎn)H在AB,CD之間,連接FE,EH,HG,∠AGH=∠FED,F(xiàn)E⊥HE,垂足為E.(1)如圖1,求證:HG⊥HE;(2)如圖2,GM平分∠HGB,EM平分∠HED,GM,EM交于點(diǎn)M,求證:∠GHE=2∠GME;(3)如圖3,在(2)的條件下,F(xiàn)K平分∠AFE交CD于點(diǎn)K,若∠KFE:∠MGH=13:5,求∠HED的度數(shù).9.如圖,∠EBF=50°,點(diǎn)C是∠EBF的邊BF上一點(diǎn).動(dòng)點(diǎn)A從點(diǎn)B出發(fā)在∠EBF的邊BE上,沿BE方向運(yùn)動(dòng),在動(dòng)點(diǎn)A運(yùn)動(dòng)的過程中,始終有過點(diǎn)A的射線AD∥BC.(1)在動(dòng)點(diǎn)A運(yùn)動(dòng)的過程中,(填“是”或“否”)存在某一時(shí)刻,使得AD平分∠EAC?(2)假設(shè)存在AD平分∠EAC,在此情形下,你能猜想∠B和∠ACB之間有何數(shù)量關(guān)系?并請(qǐng)說明理由;(3)當(dāng)AC⊥BC時(shí),直接寫出∠BAC的度數(shù)和此時(shí)AD與AC之間的位置關(guān)系.10.汛期即將來臨,防汛指揮部在某水域一危險(xiǎn)地帶兩岸各安置了一探照燈,便于夜間查看河水及兩岸河堤的情況.如圖1,燈射出的光束自順時(shí)針旋轉(zhuǎn)至便立即回轉(zhuǎn),燈射出的光束自順時(shí)針旋轉(zhuǎn)至便立即回轉(zhuǎn),兩燈不停交叉照射巡視.若燈射出的光束轉(zhuǎn)動(dòng)的速度是/秒,燈射出的光束轉(zhuǎn)動(dòng)的速度是/秒,且、滿足.假定這一帶水域兩岸河堤是平行的,即,且.(1)求、的值;(2)如圖2,兩燈同時(shí)轉(zhuǎn)動(dòng),在燈射出的光束到達(dá)之前,若兩燈射出的光束交于點(diǎn),過作交于點(diǎn),若,求的度數(shù);(3)若燈射線先轉(zhuǎn)動(dòng)30秒,燈射出的光束才開始轉(zhuǎn)動(dòng),在燈射出的光束到達(dá)之前,燈轉(zhuǎn)動(dòng)幾秒,兩燈的光束互相平行?三、解答題11.如圖,以直角三角形的直角頂點(diǎn)為原點(diǎn),以、所在直線為軸和軸建立平面直角坐標(biāo)系,點(diǎn),滿足.(1)點(diǎn)的坐標(biāo)為______;點(diǎn)的坐標(biāo)為______.(2)如圖1,已知坐標(biāo)軸上有兩動(dòng)點(diǎn)、同時(shí)出發(fā),點(diǎn)從點(diǎn)出發(fā)沿軸負(fù)方向以1個(gè)單位長(zhǎng)度每秒的速度勻速移動(dòng),點(diǎn)從點(diǎn)出發(fā)以2個(gè)單位長(zhǎng)度每秒的速度沿軸正方向移動(dòng),點(diǎn)到達(dá)點(diǎn)整個(gè)運(yùn)動(dòng)隨之結(jié)束.的中點(diǎn)的坐標(biāo)是,設(shè)運(yùn)動(dòng)時(shí)間為.問:是否存在這樣的,使?若存在,請(qǐng)求出的值:若不存在,請(qǐng)說明理由.(3)如圖2,過作,作交于點(diǎn),點(diǎn)是線段上一動(dòng)點(diǎn),連交于點(diǎn),當(dāng)點(diǎn)在線段上運(yùn)動(dòng)的過程中,的值是否會(huì)發(fā)生變化?若不變,請(qǐng)求出它的值:若變化,請(qǐng)說明理由.12.如圖1,點(diǎn)O在上,,射線交于點(diǎn)C,已知m,n滿足:.(1)試說明//的理由;(2)如圖2,平分,平分,直線、交于點(diǎn)E,則______;(3)若將繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),其余條件都不變,在旋轉(zhuǎn)過程中,的度數(shù)是否發(fā)生變化?請(qǐng)說明你的結(jié)論.13.已知AB∥CD,點(diǎn)M在直線AB上,點(diǎn)N、Q在直線CD上,點(diǎn)P在直線AB、CD之間,∠AMP=∠PQN=α,PQ平分∠MPN.(1)如圖①,求∠MPQ的度數(shù)(用含α的式子表示);(2)如圖②,過點(diǎn)Q作QE∥PN交PM的延長(zhǎng)線于點(diǎn)E,過E作EF平分∠PEQ交PQ于點(diǎn)F.請(qǐng)你判斷EF與PQ的位置關(guān)系,并說明理由;(3)如圖③,在(2)的條件下,連接EN,若NE平分∠PNQ,請(qǐng)你判斷∠NEF與∠AMP的數(shù)量關(guān)系,并說明理由.14.長(zhǎng)江汛期即將來臨,防汛指揮部在一危險(xiǎn)地帶兩岸各安置了一探照燈,便于夜間查看江水及兩岸河堤的情況,如圖,燈A射線自順時(shí)針旋轉(zhuǎn)至便立即回轉(zhuǎn),燈B射線自順時(shí)針旋轉(zhuǎn)至便立即回轉(zhuǎn),兩燈不停交叉照射巡視,若燈A轉(zhuǎn)動(dòng)的速度是a°/秒,燈B轉(zhuǎn)動(dòng)的速度是b°/秒,且a、b滿足.假定這一帶長(zhǎng)江兩岸河堤是平行的,即,且(1)求a、b的值;(2)若燈B射線先轉(zhuǎn)動(dòng)45秒,燈A射線才開始轉(zhuǎn)動(dòng),當(dāng)燈B射線第一次到達(dá)時(shí)運(yùn)動(dòng)停止,問A燈轉(zhuǎn)動(dòng)幾秒,兩燈的光束互相平行?(3)如圖,兩燈同時(shí)轉(zhuǎn)動(dòng),在燈A射線到達(dá)之前.若射出的光束交于點(diǎn)C,過C作交于點(diǎn)D,則在轉(zhuǎn)動(dòng)過程中,與的數(shù)量關(guān)系是否發(fā)生變化?若不變,請(qǐng)求出其數(shù)量關(guān)系;若改變,請(qǐng)求出其取值范圍.15.如圖所示,已知,點(diǎn)P是射線AM上一動(dòng)點(diǎn)(與點(diǎn)A不重合),BC、BD分別平分和,分別交射線AM于點(diǎn)C、D,且(1)求的度數(shù).(2)當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),與之間的數(shù)量關(guān)系是否隨之發(fā)生變化?若不變化,請(qǐng)寫出它們之間的關(guān)系,并說明理由;若變化,請(qǐng)寫出變化規(guī)律.(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到使時(shí),求的度數(shù).四、解答題16.在中,射線平分交于點(diǎn),點(diǎn)在邊上運(yùn)動(dòng)(不與點(diǎn)重合),過點(diǎn)作交于點(diǎn).(1)如圖1,點(diǎn)在線段上運(yùn)動(dòng)時(shí),平分.①若,,則_____;若,則_____;②試探究與之間的數(shù)量關(guān)系?請(qǐng)說明理由;(2)點(diǎn)在線段上運(yùn)動(dòng)時(shí),的角平分線所在直線與射線交于點(diǎn).試探究與之間的數(shù)量關(guān)系,并說明理由.17.如圖①,平分,⊥,∠B=450,∠C=730.(1)求的度數(shù);(2)如圖②,若把“⊥”變成“點(diǎn)F在DA的延長(zhǎng)線上,”,其它條件不變,求的度數(shù);(3)如圖③,若把“⊥”變成“平分”,其它條件不變,的大小是否變化,并請(qǐng)說明理由.18.Rt△ABC中,∠C=90°,點(diǎn)D、E分別是△ABC邊AC、BC上的點(diǎn),點(diǎn)P是一動(dòng)點(diǎn).令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若點(diǎn)P在線段AB上,如圖(1)所示,且∠α=50°,則∠1+∠2=°;(2)若點(diǎn)P在邊AB上運(yùn)動(dòng),如圖(2)所示,則∠α、∠1、∠2之間的關(guān)系為:;(3)若點(diǎn)P運(yùn)動(dòng)到邊AB的延長(zhǎng)線上,如圖(3)所示,則∠α、∠1、∠2之間有何關(guān)系?猜想并說明理由.(4)若點(diǎn)P運(yùn)動(dòng)到△ABC形外,如圖(4)所示,則∠α、∠1、∠2之間的關(guān)系為:.19.如圖1,已知線段AB、CD相交于點(diǎn)O,連接AC、BD,我們把形如圖1的圖形稱之為“8字形”.如圖2,∠CAB和∠BDC的平分線AP和DP相交于點(diǎn)P,并且與CD、AB分別相交于M、N.試解答下列問題:(1)仔細(xì)觀察,在圖2中有個(gè)以線段AC為邊的“8字形”;(2)在圖2中,若∠B=96°,∠C=100°,求∠P的度數(shù);(3)在圖2中,若設(shè)∠C=α,∠B=β,∠CAP=∠CAB,∠CDP=∠CDB,試問∠P與∠C、∠B之間存在著怎樣的數(shù)量關(guān)系(用α、β表示∠P),并說明理由;(4)如圖3,則∠A+∠B+∠C+∠D+∠E+∠F的度數(shù)為.20.已知ABCD,點(diǎn)E是平面內(nèi)一點(diǎn),∠CDE的角平分線與∠ABE的角平分線交于點(diǎn)F.(1)若點(diǎn)E的位置如圖1所示.①若∠ABE=60°,∠CDE=80°,則∠F=°;②探究∠F與∠BED的數(shù)量關(guān)系并證明你的結(jié)論;(2)若點(diǎn)E的位置如圖2所示,∠F與∠BED滿足的數(shù)量關(guān)系式是.(3)若點(diǎn)E的位置如圖3所示,∠CDE為銳角,且,設(shè)∠F=α,則α的取值范圍為.【參考答案】一、解答題1.(1)4;(2)不能,理由見解析.【分析】(1)根據(jù)已知正方形的面積求出大正方形的邊長(zhǎng)即可;(2)先設(shè)未知數(shù)根據(jù)面積=14(cm2)列方程,求出長(zhǎng)方形的邊長(zhǎng),將長(zhǎng)方形的長(zhǎng)與正方形邊長(zhǎng)比較大小再解析:(1)4;(2)不能,理由見解析.【分析】(1)根據(jù)已知正方形的面積求出大正方形的邊長(zhǎng)即可;(2)先設(shè)未知數(shù)根據(jù)面積=14(cm2)列方程,求出長(zhǎng)方形的邊長(zhǎng),將長(zhǎng)方形的長(zhǎng)與正方形邊長(zhǎng)比較大小再判斷即可.【詳解】解:(1)兩個(gè)正方形面積之和為:2×8=16(cm2),∴拼成的大正方形的面積=16(cm2),∴大正方形的邊長(zhǎng)是4cm;故答案為:4;(2)設(shè)長(zhǎng)方形紙片的長(zhǎng)為2xcm,寬為xcm,則2x?x=14,解得:,2x=2>4,∴不存在長(zhǎng)寬之比為且面積為的長(zhǎng)方形紙片.【點(diǎn)睛】本題考查了算術(shù)平方根,能夠根據(jù)題意列出算式是解此題的關(guān)鍵.2.(1)dm;(2)從節(jié)省籬笆費(fèi)用的角度考慮,選擇乙方案建成圓形;(3)根據(jù)此方案求出小路的寬度為【分析】(1)先求得正方體的一個(gè)面的面積,然后依據(jù)算術(shù)平方根的定義求解即可;(2)根據(jù)正方形的周解析:(1)dm;(2)從節(jié)省籬笆費(fèi)用的角度考慮,選擇乙方案建成圓形;(3)根據(jù)此方案求出小路的寬度為【分析】(1)先求得正方體的一個(gè)面的面積,然后依據(jù)算術(shù)平方根的定義求解即可;(2)根據(jù)正方形的周長(zhǎng)公式以及圓形的周長(zhǎng)公式即可求出答案;(3)根據(jù)圖形的平移求解.【詳解】解:(1)∵正方體有6個(gè)面且每個(gè)面都相等,∴正方體的一個(gè)面的面積=2dm2.∴正方形的棱長(zhǎng)=dm;故答案為:dm;(2)甲方案:設(shè)正方形的邊長(zhǎng)為xm,則x2=121∴x=11∴正方形的周長(zhǎng)為:4x=44m乙方案:設(shè)圓的半徑rm為,則r2==121∴r=11∴圓的周長(zhǎng)為:2=22m∴442222(2-∵4>∴2∴∴正方形的周長(zhǎng)比圓的周長(zhǎng)大故從節(jié)省籬笆費(fèi)用的角度考慮,選擇乙方案建成圓形;(3)依題意可進(jìn)行如圖所示的平移,設(shè)小路的寬度為ym,則(11–y)2=12121∴11–y=10∴y=∵取整數(shù)∴y=答:根據(jù)此方案求出小路的寬度為;【點(diǎn)睛】本題主要考查的是算術(shù)平方根的定義,熟練掌握正方形的性質(zhì)以及平移的性質(zhì)是解題的關(guān)鍵;3.(1);(2)①見解析;②見解析,【分析】(1)設(shè)正方形邊長(zhǎng)為a,根據(jù)正方形面積公式,結(jié)合平方根的運(yùn)算求出a值,則知結(jié)果;(2)①根據(jù)面積相等,利用割補(bǔ)法裁剪后拼得如圖所示的正方形;②解析:(1);(2)①見解析;②見解析,【分析】(1)設(shè)正方形邊長(zhǎng)為a,根據(jù)正方形面積公式,結(jié)合平方根的運(yùn)算求出a值,則知結(jié)果;(2)①根據(jù)面積相等,利用割補(bǔ)法裁剪后拼得如圖所示的正方形;②由題(1)的原理得出大正方形的邊長(zhǎng)為,然后在數(shù)軸上以-3為圓心,以大正方形的邊長(zhǎng)為半徑畫弧交數(shù)軸的右方與一點(diǎn)M,再把N點(diǎn)表示出來,即可比較它們的大?。驹斀狻拷猓涸O(shè)正方形邊長(zhǎng)為a,∵a2=2,∴a=,故答案為:,;(2)解:①裁剪后拼得的大正方形如圖所示:②設(shè)拼成的大正方形的邊長(zhǎng)為b,∴b2=5,∴b=±,在數(shù)軸上以-3為圓心,以大正方形的邊長(zhǎng)為半徑畫弧交數(shù)軸的右方與一點(diǎn)M,則M表示的數(shù)為-3+,看圖可知,表示-0.5的N點(diǎn)在M點(diǎn)的右方,∴比較大?。海军c(diǎn)睛】本題主要考查平方根與算術(shù)平方根的應(yīng)用及實(shí)數(shù)的大小比較,熟練掌握平方根與算術(shù)平方根的意義及實(shí)數(shù)的大小比較是解題的關(guān)鍵.4.(1)可以以正方形一邊為長(zhǎng)方形的長(zhǎng),在其鄰邊上截取長(zhǎng)為15cm的線段作為寬即可裁出符合要求的長(zhǎng)方形;(2)不能,理由見解析.【解析】(1)解:設(shè)面積為400cm2的正方形紙片的邊長(zhǎng)為acm∴解析:(1)可以以正方形一邊為長(zhǎng)方形的長(zhǎng),在其鄰邊上截取長(zhǎng)為15cm的線段作為寬即可裁出符合要求的長(zhǎng)方形;(2)不能,理由見解析.【解析】(1)解:設(shè)面積為400cm2的正方形紙片的邊長(zhǎng)為acm∴a2=400又∵a>0∴a=20又∵要裁出的長(zhǎng)方形面積為300cm2∴若以原正方形紙片的邊長(zhǎng)為長(zhǎng)方形的長(zhǎng),則長(zhǎng)方形的寬為:300÷20=15(cm)∴可以以正方形一邊為長(zhǎng)方形的長(zhǎng),在其鄰邊上截取長(zhǎng)為15cm的線段作為寬即可裁出符合要求的長(zhǎng)方形(2)∵長(zhǎng)方形紙片的長(zhǎng)寬之比為3:2∴設(shè)長(zhǎng)方形紙片的長(zhǎng)為3xcm,則寬為2xcm∴6x2=300∴x2=50又∵x>0∴x=∴長(zhǎng)方形紙片的長(zhǎng)為又∵>202即:>20∴小麗不能用這塊紙片裁出符合要求的紙片5.不同意,理由見解析【分析】先求得正方形的邊長(zhǎng),然后設(shè)設(shè)長(zhǎng)方形寬為,長(zhǎng)為,然后依據(jù)矩形的面積為20列方程求得的值,從而得到矩形的邊長(zhǎng),從而可作出判斷.【詳解】解:不同意,因?yàn)檎叫蔚拿娣e為,解析:不同意,理由見解析【分析】先求得正方形的邊長(zhǎng),然后設(shè)設(shè)長(zhǎng)方形寬為,長(zhǎng)為,然后依據(jù)矩形的面積為20列方程求得的值,從而得到矩形的邊長(zhǎng),從而可作出判斷.【詳解】解:不同意,因?yàn)檎叫蔚拿娣e為,故邊長(zhǎng)為設(shè)長(zhǎng)方形寬為,則長(zhǎng)為長(zhǎng)方形面積∴,解得(負(fù)值舍去)長(zhǎng)為即長(zhǎng)方形的長(zhǎng)大于正方形的邊長(zhǎng),所以不能裁出符合要求的長(zhǎng)方形紙片【點(diǎn)睛】本題主要考查的是算術(shù)平方根的性質(zhì),熟練掌握算術(shù)平方根的性質(zhì)是解題的關(guān)鍵.二、解答題6.(1)①18°;②2∠BEG+∠HFG=90°,證明見解析;(2)2∠BEG-∠HFG=90°證明見解析部【分析】(1)①證明2∠BEG+∠HFG=90°,可得結(jié)論.②利用平行線的性質(zhì)證明即可.解析:(1)①18°;②2∠BEG+∠HFG=90°,證明見解析;(2)2∠BEG-∠HFG=90°證明見解析部【分析】(1)①證明2∠BEG+∠HFG=90°,可得結(jié)論.②利用平行線的性質(zhì)證明即可.(2)如圖2中,結(jié)論:2∠BEG-∠HFG=90°.利用平行線的性質(zhì)證明即可.【詳解】解:(1)①∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°+∠HFG=180°,∴2∠BEG+∠HFG=90°,∵∠BEG=36°,∴∠HFG=18°.故答案為:18°.②結(jié)論:2∠BEG+∠HFG=90°.理由:∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°+∠HFG=180°,∴2∠BEG+∠HFG=90°.(2)如圖2中,結(jié)論:2∠BEG-∠HFG=90°.理由:∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°-∠HFG=180°,∴2∠BEG-∠HFG=90°.【點(diǎn)睛】本題考查平行線的性質(zhì),角平分線的定義等知識(shí),解題的關(guān)鍵是熟練掌握基本知識(shí),屬于中考??碱}型.7.(1)見解析;(2)10°;(3)【分析】(1)過點(diǎn)E作EF∥CD,根據(jù)平行線的性質(zhì),兩直線平行,內(nèi)錯(cuò)角相等,得出結(jié)合已知條件,得出即可證明;(2)過點(diǎn)E作HE∥CD,設(shè)由(1)得AB∥CD解析:(1)見解析;(2)10°;(3)【分析】(1)過點(diǎn)E作EF∥CD,根據(jù)平行線的性質(zhì),兩直線平行,內(nèi)錯(cuò)角相等,得出結(jié)合已知條件,得出即可證明;(2)過點(diǎn)E作HE∥CD,設(shè)由(1)得AB∥CD,則AB∥CD∥HE,由平行線的性質(zhì),得出再由平分,得出則,則可列出關(guān)于x和y的方程,即可求得x,即的度數(shù);(3)過點(diǎn)N作NP∥CD,過點(diǎn)M作QM∥CD,由(1)得AB∥CD,則NP∥CD∥AB∥QM,根據(jù)和,得出根據(jù)CD∥PN∥QM,DE∥NB,得出即根據(jù)NP∥AB,得出再由,得出由AB∥QM,得出因?yàn)?,代入的式子即可求出.【詳解】?)過點(diǎn)E作EF∥CD,如圖,∵EF∥CD,∴∴∵,∴∴EF∥AB,∴CD∥AB;(2)過點(diǎn)E作HE∥CD,如圖,設(shè)由(1)得AB∥CD,則AB∥CD∥HE,∴∴又∵平分,∴∴即解得:即;(3)過點(diǎn)N作NP∥CD,過點(diǎn)M作QM∥CD,如圖,由(1)得AB∥CD,則NP∥CD∥AB∥QM,∵NP∥CD,CD∥QM,∴,又∵,∴∵,∴∴又∵PN∥AB,∴∵,∴又∵AB∥QM,∴∴∴.【點(diǎn)睛】本題考查平行線的性質(zhì),角平分線的定義,解決問題的關(guān)鍵是作平行線構(gòu)造相等的角,利用兩直線平行,內(nèi)錯(cuò)角相等,同位角相等來計(jì)算和推導(dǎo)角之間的關(guān)系.8.(1)見解析;(2)見解析;(3)40°【分析】(1)根據(jù)平行線的性質(zhì)和判定解答即可;(2)過點(diǎn)H作HP∥AB,根據(jù)平行線的性質(zhì)解答即可;(3)過點(diǎn)H作HP∥AB,根據(jù)平行線的性質(zhì)解答即可.解析:(1)見解析;(2)見解析;(3)40°【分析】(1)根據(jù)平行線的性質(zhì)和判定解答即可;(2)過點(diǎn)H作HP∥AB,根據(jù)平行線的性質(zhì)解答即可;(3)過點(diǎn)H作HP∥AB,根據(jù)平行線的性質(zhì)解答即可.【詳解】證明:(1)∵AB∥CD,∴∠AFE=∠FED,∵∠AGH=∠FED,∴∠AFE=∠AGH,∴EF∥GH,∴∠FEH+∠H=180°,∵FE⊥HE,∴∠FEH=90°,∴∠H=180°﹣∠FEH=90°,∴HG⊥HE;(2)過點(diǎn)M作MQ∥AB,∵AB∥CD,∴MQ∥CD,過點(diǎn)H作HP∥AB,∵AB∥CD,∴HP∥CD,∵GM平分∠HGB,∴∠BGM=∠HGM=∠BGH,∵EM平分∠HED,∴∠HEM=∠DEM=∠HED,∵M(jìn)Q∥AB,∴∠BGM=∠GMQ,∵M(jìn)Q∥CD,∴∠QME=∠MED,∴∠GME=∠GMQ+∠QME=∠BGM+∠MED,∵HP∥AB,∴∠BGH=∠GHP=2∠BGM,∵HP∥CD,∴∠PHE=∠HED=2∠MED,∴∠GHE=∠GHP+∠PHE=2∠BGM+2∠MED=2(∠BGM+∠MED),∴∠GHE=∠2GME;(3)過點(diǎn)M作MQ∥AB,過點(diǎn)H作HP∥AB,由∠KFE:∠MGH=13:5,設(shè)∠KFE=13x,∠MGH=5x,由(2)可知:∠BGH=2∠MGH=10x,∵∠AFE+∠BFE=180°,∴∠AFE=180°﹣10x,∵FK平分∠AFE,∴∠AFK=∠KFE=∠AFE,即,解得:x=5°,∴∠BGH=10x=50°,∵HP∥AB,HP∥CD,∴∠BGH=∠GHP=50°,∠PHE=∠HED,∵∠GHE=90°,∴∠PHE=∠GHE﹣∠GHP=90°﹣50°=40°,∴∠HED=40°.【點(diǎn)睛】本題考查了平行線的判定與性質(zhì),熟練掌握平行線的判定與性質(zhì)定理以及靈活構(gòu)造平行線是解題的關(guān)鍵.9.(1)是;(2)∠B=∠ACB,證明見解析;(3)∠BAC=40°,AC⊥AD.【分析】(1)要使AD平分∠EAC,則要求∠EAD=∠CAD,由平行線的性質(zhì)可得∠B=∠EAD,∠ACB=∠CAD解析:(1)是;(2)∠B=∠ACB,證明見解析;(3)∠BAC=40°,AC⊥AD.【分析】(1)要使AD平分∠EAC,則要求∠EAD=∠CAD,由平行線的性質(zhì)可得∠B=∠EAD,∠ACB=∠CAD,則當(dāng)∠ACB=∠B時(shí),有AD平分∠EAC;(2)根據(jù)角平分線可得∠EAD=∠CAD,由平行線的性質(zhì)可得∠B=∠EAD,∠ACB=∠CAD,則有∠ACB=∠B;(3)由AC⊥BC,有∠ACB=90°,則可求∠BAC=40°,由平行線的性質(zhì)可得AC⊥AD.【詳解】解:(1)是,理由如下:要使AD平分∠EAC,則要求∠EAD=∠CAD,由平行線的性質(zhì)可得∠B=∠EAD,∠ACB=∠CAD,則當(dāng)∠ACB=∠B時(shí),有AD平分∠EAC;故答案為:是;(2)∠B=∠ACB,理由如下:∵AD平分∠EAC,∴∠EAD=∠CAD,∵AD∥BC,∴∠B=∠EAD,∠ACB=∠CAD,∴∠B=∠ACB.(3)∵AC⊥BC,∴∠ACB=90°,∵∠EBF=50°,∴∠BAC=40°,∵AD∥BC,∴AD⊥AC.【點(diǎn)睛】此題考查了角平分線和平行線的性質(zhì),熟練掌握角平分線和平行線的有關(guān)性質(zhì)是解題的關(guān)鍵.10.(1),;(2)30°;(3)15秒或82.5秒【分析】(1)解出式子即可;(2)根據(jù),用含t的式子表示出,根據(jù)(2)中給出的條件得出方程式,求出t的值,進(jìn)而求出的度數(shù);(3)根據(jù)燈B的解析:(1),;(2)30°;(3)15秒或82.5秒【分析】(1)解出式子即可;(2)根據(jù),用含t的式子表示出,根據(jù)(2)中給出的條件得出方程式,求出t的值,進(jìn)而求出的度數(shù);(3)根據(jù)燈B的要求,t<150,在這個(gè)時(shí)間段內(nèi)A可以轉(zhuǎn)3次,分情況討論.【詳解】解:(1).又,.,;(2)設(shè)燈轉(zhuǎn)動(dòng)時(shí)間為秒,如圖,作,而,,,,,,(3)設(shè)燈轉(zhuǎn)動(dòng)秒,兩燈的光束互相平行.依題意得①當(dāng)時(shí),兩河岸平行,所以兩光線平行,所以所以,即:,解得;②當(dāng)時(shí),兩光束平行,所以兩河岸平行,所以所以,,解得;③當(dāng)時(shí),圖大概如①所示,解得(不合題意)綜上所述,當(dāng)秒或82.5秒時(shí),兩燈的光束互相平行.【點(diǎn)睛】這道題考察的是平行線的性質(zhì)和一元一次方程的應(yīng)用.根據(jù)平行線的性質(zhì)找到對(duì)應(yīng)角列出方程是解題的關(guān)鍵.三、解答題11.(1),;(2)1;(3)不變,值為2【分析】(1)根據(jù)絕對(duì)值和算術(shù)平方根的非負(fù)性,求得a,b的值,再利用中點(diǎn)坐標(biāo)公式即可得出答案;(2)先得出CP=t,OP=2-t,OQ=2t,AQ=4-解析:(1),;(2)1;(3)不變,值為2【分析】(1)根據(jù)絕對(duì)值和算術(shù)平方根的非負(fù)性,求得a,b的值,再利用中點(diǎn)坐標(biāo)公式即可得出答案;(2)先得出CP=t,OP=2-t,OQ=2t,AQ=4-2t,再根據(jù)S△ODP=S△ODQ,列出關(guān)于t的方程,求得t的值即可;(3)過H點(diǎn)作AC的平行線,交x軸于P,先判定OG∥AC,再根據(jù)角的和差關(guān)系以及平行線的性質(zhì),得出∠PHO=∠GOF=∠1+∠2,∠OHC=∠OHP+∠PHC=∠GOF+∠4=∠1+∠2+∠4,最后代入進(jìn)行計(jì)算即可.【詳解】解:(1)∵+|b-2|=0,∴a-2b=0,b-2=0,解得a=4,b=2,∴A(0,4),C(2,0).(2)存在,理由:如圖1中,D(1,2),由條件可知:P點(diǎn)從C點(diǎn)運(yùn)動(dòng)到O點(diǎn)時(shí)間為2秒,Q點(diǎn)從O點(diǎn)運(yùn)動(dòng)到A點(diǎn)時(shí)間為2秒,∴0<t≤2時(shí),點(diǎn)Q在線段AO上,即CP=t,OP=2-t,OQ=2t,AQ=4-2t,∴S△DOP=?OP?yD=(2-t)×2=2-t,S△DOQ=?OQ?xD=×2t×1=t,∵S△ODP=S△ODQ,∴2-t=t,∴t=1.(3)結(jié)論:的值不變,其值為2.理由如下:如圖2中,∵∠2+∠3=90°,又∵∠1=∠2,∠3=∠FCO,∴∠GOC+∠ACO=180°,∴OG∥AC,∴∠1=∠CAO,∴∠OEC=∠CAO+∠4=∠1+∠4,如圖,過H點(diǎn)作AC的平行線,交x軸于P,則∠4=∠PHC,PH∥OG,∴∠PHO=∠GOF=∠1+∠2,∴∠OHC=∠OHP+∠PHC=∠GOF+∠4=∠1+∠2+∠4,∴=2.【點(diǎn)睛】本題主要考查三角形綜合題、非負(fù)數(shù)的性質(zhì)、三角形的面積、平行線的性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,學(xué)會(huì)用轉(zhuǎn)化的思想思考問題.12.(1)見解析;(2)45;(3)不變,見解析;【分析】(1)由可求得m及n,從而可求得∠MOC=∠OCQ,則可得結(jié)論;(2)易得∠AON的度數(shù),由兩條角平分線,可得∠DON,∠OCF的度數(shù),也解析:(1)見解析;(2)45;(3)不變,見解析;【分析】(1)由可求得m及n,從而可求得∠MOC=∠OCQ,則可得結(jié)論;(2)易得∠AON的度數(shù),由兩條角平分線,可得∠DON,∠OCF的度數(shù),也易得∠COE的度數(shù),由三角形外角的性質(zhì)即可求得∠OEF的度數(shù);(3)不變,分三種情況討論即可.【詳解】(1)∵,,且∴,∴m=20,n=70∴∠MOC=90゜-∠AOM=70゜∴∠MOC=∠OCQ=70゜∴MN∥PQ(2)∵∠AON=180゜-∠AOM=160゜又∵平分,平分∴,∵∴∴∠OEF=∠OCF+∠COE=35゜+10゜=45゜故答案為:45.(3)不變,理由如下:如圖,當(dāng)0゜<α<20゜時(shí),∵CF平分∠OCQ∴∠OCF=∠QCF設(shè)∠OCF=∠QCF=x則∠OCQ=2x∵M(jìn)N∥PQ∴∠MOC=∠OCQ=2x∵∠AON=360゜-90゜—(180゜-2x)=90゜+2x,OD平分∠AON∴∠DON=45゜+x∵∠MOE=∠DON=45゜+x∴∠COE=∠MOE-∠MOC=45゜+x-2x=45゜-x∴∠OEF=∠COE+∠OCF=45゜-x+x=45゜當(dāng)α=20゜時(shí),OD與OB共線,則∠OCQ=90゜,由CF平分∠OCQ知,∠OEF=45゜當(dāng)20゜<α<90゜時(shí),如圖∵CF平分∠OCQ∴∠OCF=∠QCF設(shè)∠OCF=∠QCF=x則∠OCQ=2x∵M(jìn)N∥PQ∴∠NOC=180゜-∠OCQ=180゜-2x∵∠AON=90゜+(180゜-2x)=270゜-2x,OD平分∠AON∴∠AOE=135゜-x∴∠COE=90゜-∠AOE=90゜-(135゜-x)=x-45゜∴∠OEF=∠OCF-∠COE=x-(x-45゜)=45゜綜上所述,∠EOF的度數(shù)不變.【點(diǎn)睛】本題主要考查了角平分線的定義,平行線的判定與性質(zhì),角的和差關(guān)系,注意分類討論,引入適當(dāng)?shù)牧勘阌谶\(yùn)算簡(jiǎn)便.13.(1)2α;(2)EF⊥PQ,見解析;(3)∠NEF=∠AMP,見解析【分析】1)如圖①,過點(diǎn)P作PR∥AB,可得AB∥CD∥PR,進(jìn)而可得結(jié)論;(2)根據(jù)已知條件可得2∠EPQ+2∠PEF=解析:(1)2α;(2)EF⊥PQ,見解析;(3)∠NEF=∠AMP,見解析【分析】1)如圖①,過點(diǎn)P作PR∥AB,可得AB∥CD∥PR,進(jìn)而可得結(jié)論;(2)根據(jù)已知條件可得2∠EPQ+2∠PEF=180°,進(jìn)而可得EF與PQ的位置關(guān)系;(3)結(jié)合(2)和已知條件可得∠QNE=∠QEN,根據(jù)三角形內(nèi)角和定理可得∠QNE=(180°﹣∠NQE)=(180°﹣3α),可得∠NEF=180°﹣∠QEF﹣∠NQE﹣∠QNE,進(jìn)而可得結(jié)論.【詳解】解:(1)如圖①,過點(diǎn)P作PR∥AB,∵AB∥CD,∴AB∥CD∥PR,∴∠AMP=∠MPR=α,∠PQN=∠RPQ=α,∴∠MPQ=∠MPR+∠RPQ=2α;(2)如圖②,EF⊥PQ,理由如下:∵PQ平分∠MPN.∴∠MPQ=∠NPQ=2α,∵QE∥PN,∴∠EQP=∠NPQ=2α,∴∠EPQ=∠EQP=2α,∵EF平分∠PEQ,∴∠PEQ=2∠PEF=2∠QEF,∵∠EPQ+∠EQP+∠PEQ=180°,∴2∠EPQ+2∠PEF=180°,∴∠EPQ+∠PEF=90°,∴∠PFE=180°﹣90°=90°,∴EF⊥PQ;(3)如圖③,∠NEF=∠AMP,理由如下:由(2)可知:∠EQP=2α,∠EFQ=90°,∴∠QEF=90°﹣2α,∵∠PQN=α,∴∠NQE=∠PQN+∠EQP=3α,∵NE平分∠PNQ,∴∠PNE=∠QNE,∵QE∥PN,∴∠QEN=∠PNE,∴∠QNE=∠QEN,∵∠NQE=3α,∴∠QNE=(180°﹣∠NQE)=(180°﹣3α),∴∠NEF=180°﹣∠QEF﹣∠NQE﹣∠QNE=180°﹣(90°﹣2α)﹣3α﹣(180°﹣3α)=180°﹣90°+2α﹣3α﹣90°+α=α=∠AMP.∴∠NEF=∠AMP.【點(diǎn)睛】本題考查了平行線的性質(zhì),角平分線的性質(zhì),熟悉相關(guān)性質(zhì)是解題的關(guān)鍵.14.(1),;(2)15秒或63秒;(3)不發(fā)生變化,【分析】(1)利用非負(fù)數(shù)的性質(zhì)解決問題即可.(2)分三種情形,利用平行線的性質(zhì)構(gòu)建方程即可解決問題.(3)由參數(shù)表示,即可判斷.【詳解】解析:(1),;(2)15秒或63秒;(3)不發(fā)生變化,【分析】(1)利用非負(fù)數(shù)的性質(zhì)解決問題即可.(2)分三種情形,利用平行線的性質(zhì)構(gòu)建方程即可解決問題.(3)由參數(shù)表示,即可判斷.【詳解】解:(1)∵,∴,,;(2)設(shè)燈轉(zhuǎn)動(dòng)秒,兩燈的光束互相平行,①當(dāng)時(shí),,解得;②當(dāng)時(shí),,解得;③當(dāng)時(shí),,解得,(不合題意)綜上所述,當(dāng)t=15秒或63秒時(shí),兩燈的光束互相平行;(3)設(shè)燈轉(zhuǎn)動(dòng)時(shí)間為秒,,,又,,而,,,即.【點(diǎn)睛】本題考查平行線的性質(zhì)和判定,非負(fù)數(shù)的性質(zhì)等知識(shí),解題的關(guān)鍵是理解題意,學(xué)會(huì)利用參數(shù)構(gòu)建方程解決問題,屬于中考??碱}型.15.(1);(2)不變化,,理由見解析;(3)【分析】(1)結(jié)合題意,根據(jù)角平分線的性質(zhì),得;再根據(jù)平行線的性質(zhì)計(jì)算,即可得到答案;(2)根據(jù)平行線的性質(zhì),得,;結(jié)合角平分線性質(zhì),得,即可完成求解解析:(1);(2)不變化,,理由見解析;(3)【分析】(1)結(jié)合題意,根據(jù)角平分線的性質(zhì),得;再根據(jù)平行線的性質(zhì)計(jì)算,即可得到答案;(2)根據(jù)平行線的性質(zhì),得,;結(jié)合角平分線性質(zhì),得,即可完成求解;(3)根據(jù)平行線的性質(zhì),得;結(jié)合,推導(dǎo)得;再結(jié)合(1)的結(jié)論計(jì)算,即可得到答案.【詳解】(1)∵BC,BD分別評(píng)分和,∴,∴又∵,∴∵,∴∴;(2)∵,∴,又∵BD平分∴,∴;∴與之間的數(shù)量關(guān)系保持不變;(3)∵,∴又∵,∴,∵∴由(1)可得,∴.【點(diǎn)睛】本題考查了角平分線、平行線的知識(shí);解題的關(guān)鍵是熟練掌握角平分線、平行線的性質(zhì),從而完成求解.四、解答題16.(1)①115°,110°;②,證明見解析;(2),證明見解析.【解析】【分析】(1)①根據(jù)角平分線的定義求得∠CAG=∠BAC=50°;再由平行線的性質(zhì)可得∠EDG=∠C=30°,∠FMD=解析:(1)①115°,110°;②,證明見解析;(2),證明見解析.【解析】【分析】(1)①根據(jù)角平分線的定義求得∠CAG=∠BAC=50°;再由平行線的性質(zhì)可得∠EDG=∠C=30°,∠FMD=∠GAC=50°;由三角形的內(nèi)角和定理求得∠AFD的度數(shù)即可;已知AG平分∠BAC,DF平分∠EDB,根據(jù)角平分線的定義可得∠CAG=∠BAC,∠FDM=∠EDG;由DE//AC,根據(jù)平行線的性質(zhì)可得∠EDG=∠C,∠FMD=∠GAC;即可得∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×140°=70°;再由三角形的內(nèi)角和定理可求得∠AFD=110°;②∠AFD=90°+∠B,已知AG平分∠BAC,DF平分∠EDB,根據(jù)角平分線的定義可得∠CAG=∠BAC,∠FDM=∠EDG;由DE//AC,根據(jù)平行線的性質(zhì)可得∠EDG=∠C,∠FMD=∠GAC;由此可得∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;再由三角形的內(nèi)角和定理可得∠AFD=90°+∠B;(2)∠AFD=90°-∠B,已知AG平分∠BAC,DF平分∠EDB,根據(jù)角平分線的定義可得∠CAG=∠BAC,∠NDE=∠EDB,即可得∠FDM=∠NDE=∠EDB;由DE//AC,根據(jù)平行線的性質(zhì)可得∠EDB=∠C,∠FMD=∠GAC;即可得到∠FDM=∠NDE=∠C,所以∠FDM+∠FMD=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;再由三角形外角的性質(zhì)可得∠AFD=∠FDM+∠FMD=90°-∠B.【詳解】(1)①∵AG平分∠BAC,∠BAC=100°,∴∠CAG=∠BAC=50°;∵,∠C=30°,∴∠EDG=∠C=30°,∠FMD=∠GAC=50°;∵DF平分∠EDB,∴∠FDM=∠EDG=15°;∴∠AFD=180°-∠FMD-∠FDM=180°-50°-15°=115°;∵∠B=40°,∴∠BAC+∠C=180°-∠B=140°;∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=∠BAC,∠FDM=∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×140°=70°;∴∠AFD=180°-(∠FDM+∠FMD)=180°-70°=110°;故答案為115°,110°;②∠AFD=90°+∠B,理由如下:∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=∠BAC,∠FDM=∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;∴∠AFD=180°-(∠FDM+∠FMD)=180°-(90°-∠B)=90°+∠B;(2)∠AFD=90°-∠B,理由如下:如圖,射線ED交AG于點(diǎn)M,∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=∠BAC,∠NDE=∠EDB,∴∠FDM=∠NDE=∠EDB,∵DE//AC,∴∠EDB=∠C,∠FMD=∠GAC;∴∠FDM=∠NDE=∠C,∴∠FDM+∠FMD=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;∴∠AFD=∠FDM+∠FMD=90°-∠B.【點(diǎn)睛】本題考查了角平分線的定義、平行線的性質(zhì)、三角形的內(nèi)角和定理及三角形外角的性質(zhì),根據(jù)角平分線的定義、平行線的性質(zhì)、三角形的內(nèi)角和定理及三角形外角的性質(zhì)確定各角之間的關(guān)系是解決問題的關(guān)鍵.17.(1)∠DAE=14°;(2)∠DFE=14°;(3)∠DAE的大小不變,∠DAE=14°,證明詳見解析.【分析】(1)求出∠ADE的度數(shù),利用∠DAE=90°-∠ADE即可求出∠DAE解析:(1)∠DAE=14°;(2)∠DFE=14°;(3)∠DAE的大小不變,∠DAE=14°,證明詳見解析.【分析】(1)求出∠ADE的度數(shù),利用∠DAE=90°-∠ADE即可求出∠DAE的度數(shù).(2)求出∠ADE的度數(shù),利用∠DFE=90°-∠ADE即可求出∠DAE的度數(shù).(3)利用AE平分∠BEC,AD平分∠BAC,求出∠DFE=15°即是最好的證明.【詳解】(1)∵∠B=45°,∠C=73°,∴∠BAC=62°,∵AD平分∠BAC,∴∠BAD=∠CAD=31°,∴∠ADE=∠B+∠BAD=45°+31°=76°,∵AE⊥BC,∴∠AEB=90°,∴∠DAE=90°-∠ADE=14°.(2)同(1),可得,∠ADE=76°,∵FE⊥BC,∴∠FEB=90°,∴∠DFE=90°-∠ADE=14°.(3)的大小不變.=14°理由:∵AD平分∠BAC,AE平分∠BEC∴∠BAC=2∠BAD,∠BEC=2∠AEB∵∠BAC+∠B+∠BEC+∠C=360°∴2∠BAD+2∠AEB=360°-∠B-∠C=242°∴∠BAD+∠AEB=121°∵∠ADE=∠B+∠BAD∴∠ADE=45°+∠BAD∴∠DAE=180°-∠AEB-∠ADE=180°-∠AEB-45°-∠BAD=135°-(∠AEB+∠BAD)=135°-121°=14°【點(diǎn)睛】本題考查了三角形內(nèi)角和定理和三角形外角的性質(zhì),熟練掌握性質(zhì)是解題的關(guān)鍵.18.(1)140°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由見解析;(4)∠2=90°+∠1﹣α.【詳解】試題分析:(1)根據(jù)四邊形內(nèi)角和定理以及鄰補(bǔ)角的定義,得出∠1+∠2解析:(1)140°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由見解析;(4)∠2=90°+∠1﹣α.【詳解】試題分析:(1)根據(jù)四邊形內(nèi)角和定理以及鄰補(bǔ)角的定義,得出∠1+∠2=∠C+∠α,進(jìn)而得出即可;(2)利用(1)中所求的結(jié)論得出∠α、∠1、∠2之間的關(guān)系即可;(3)利用三角外角的性質(zhì),得出∠1=∠C+∠2+α=90°+∠2+α;(4)利用三角形內(nèi)角和定理以及鄰補(bǔ)角的性質(zhì)可得出∠α、∠1、∠2之間的關(guān)系.試題分析:(1)∵∠1+∠2+∠CDP+∠CEP=360°,∠C+∠α+∠CDP+∠CEP=360°,∴∠1+∠2=∠C+∠α,∵∠C=90°,∠α=50°,∴∠1+∠2=140°,故答案為140;(2)由(1)得∠α+∠C=∠1+∠2,∴∠1+∠2=90°+∠α.故答案為∠1+∠2=90°+∠α.(3)∠1=90°+∠2+∠α.理由如下:如圖③,設(shè)DP與BE的交點(diǎn)為M,∵∠2+∠α=∠DME,∠DME+∠C=∠1,∴∠1=∠C+∠2+∠α=90°+∠2+∠α.(4)如圖④,設(shè)PE與AC的交點(diǎn)為F,∵∠PFD=∠EFC,∴180°-∠PFD=180°-∠EFC,∴∠α+180°-∠1=∠C+180°-∠2,∴∠2=90°+∠1-∠α.故答案為∠2=90°+∠1-∠α點(diǎn)睛:本題考查了三角形內(nèi)角和定理和外角的性質(zhì)、對(duì)頂角相等的性質(zhì),熟練掌握三角形外角的性質(zhì)是解決問題的關(guān)鍵.19.(1)3;(2)98°;(3)∠P=(β+2α),理由見解析;(4)360°.【分析】(1)以M為交點(diǎn)的“8字形”有1個(gè),以O(shè)為交點(diǎn)的“8字形”有2個(gè);(2)根據(jù)角平分線的定義得到∠CAP=∠解析:(1)3;(2)98°;(3)∠P=(β+2α),理由見解析;(4)360°.【分析】(1)以M為交點(diǎn)的“8字形”有1個(gè),以O(shè)為交點(diǎn)的“8字形”有2個(gè);(2)根據(jù)角平分線的定義得到∠CAP=∠BAP,∠BDP=∠CDP,再根據(jù)三角形內(nèi)角和定理得到∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,兩等式相減得到∠C﹣∠P=∠P﹣∠B,即∠P=(∠C+∠B),然后把∠C=100°,∠B=96°代入計(jì)算即可;(3)與(2)的證明方法一樣得到∠P=(2∠C+∠B).(4)根據(jù)三角形

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論