新高考數(shù)學(xué)一輪復(fù)習(xí)7.1 空間幾何中的平行(精練)(基礎(chǔ)版)(解析版)_第1頁
新高考數(shù)學(xué)一輪復(fù)習(xí)7.1 空間幾何中的平行(精練)(基礎(chǔ)版)(解析版)_第2頁
新高考數(shù)學(xué)一輪復(fù)習(xí)7.1 空間幾何中的平行(精練)(基礎(chǔ)版)(解析版)_第3頁
新高考數(shù)學(xué)一輪復(fù)習(xí)7.1 空間幾何中的平行(精練)(基礎(chǔ)版)(解析版)_第4頁
新高考數(shù)學(xué)一輪復(fù)習(xí)7.1 空間幾何中的平行(精練)(基礎(chǔ)版)(解析版)_第5頁
已閱讀5頁,還剩27頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

7.1空間幾何中的平行(精練)(基礎(chǔ)版)題組一題組一三角形中位線1.(2022·云南麗江)如圖,在四棱錐SKIPIF1<0中,底面SKIPIF1<0是正方形,SKIPIF1<0與SKIPIF1<0交于點(diǎn)O,E為SKIPIF1<0的中點(diǎn),求證:SKIPIF1<0SKIPIF1<0平面SKIPIF1<0【答案】證明見解析【解析】證明:∵四邊形SKIPIF1<0為正方形,∴O為SKIPIF1<0的中點(diǎn),∵E為SKIPIF1<0的中點(diǎn),∴SKIPIF1<0,又∵SKIPIF1<0平面SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0平面SKIPIF1<0;2(2022·四川宜賓)如圖,正方形ABED的邊長為1,G,F(xiàn)分別是EC,BD的中點(diǎn),求證:SKIPIF1<0平面ABC【答案】證明見解析;【解析】如圖,連接AE,因F是正方形ABED對角線BD的中點(diǎn),則F是AE的中點(diǎn),而G是CE的中點(diǎn),則SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0.3.(2022·浙江·瑞安市第六中學(xué)高一階段練習(xí))如圖,在四棱錐SKIPIF1<0中,底面SKIPIF1<0為矩形,SKIPIF1<0為SKIPIF1<0中點(diǎn),證明:SKIPIF1<0平面SKIPIF1<0【答案】證明見解析【解析】證明:設(shè)SKIPIF1<0,連接SKIPIF1<0,因?yàn)镾KIPIF1<0分別為SKIPIF1<0中點(diǎn),所以SKIPIF1<0//SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0//平面SKIPIF1<0.4.(2022·河北唐山)如圖,在直三棱柱SKIPIF1<0中,SKIPIF1<0為SKIPIF1<0的中點(diǎn),求證:SKIPIF1<0平面SKIPIF1<0【答案】證明見解析【解析】證明:連接SKIPIF1<0,設(shè)SKIPIF1<0,連接SKIPIF1<0,在直三棱柱SKIPIF1<0中,四邊形SKIPIF1<0為平行四邊形,則SKIPIF1<0為SKIPIF1<0的中點(diǎn),又因?yàn)镾KIPIF1<0為SKIPIF1<0的中點(diǎn),則SKIPIF1<0,因?yàn)镾KIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,因此,SKIPIF1<0平面SKIPIF1<0.5.(2022·吉林·長春市實(shí)驗(yàn)中學(xué))已知直三棱柱SKIPIF1<0中,D為AB中點(diǎn),求證:SKIPIF1<0平面SKIPIF1<0【答案】證明見解析;【解析】在直三棱柱SKIPIF1<0中,連SKIPIF1<0,連SKIPIF1<0,如圖,則O為SKIPIF1<0中點(diǎn),而D為AB中點(diǎn),則有SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0.題組二題組二構(gòu)造平行四邊形1.(2022·黑龍江·哈師大附中高一期末)四棱錐SKIPIF1<0底面SKIPIF1<0為直角梯形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的中點(diǎn),求證:SKIPIF1<0平面SKIPIF1<0【答案】證明見解析;【解析】取SKIPIF1<0的中點(diǎn)SKIPIF1<0,連接SKIPIF1<0,如圖所示,SKIPIF1<0SKIPIF1<0為SKIPIF1<0的中點(diǎn),SKIPIF1<0為SKIPIF1<0的中點(diǎn),SKIPIF1<0,且SKIPIF1<0,又底面SKIPIF1<0為直角梯形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0四邊形SKIPIF1<0為平行四邊形,SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0SKIPIF1<0平面SKIPIF1<0.2.(2022·遼寧朝陽)如圖,在直三棱柱SKIPIF1<0中,分別是SKIPIF1<0,SKIPIF1<0的中點(diǎn),求證:SKIPIF1<0SKIPIF1<0平面SKIPIF1<0【答案】證明見解析【解析】證明:在直三棱柱SKIPIF1<0中,SKIPIF1<0分別是SKIPIF1<0的中點(diǎn),取SKIPIF1<0的中點(diǎn)SKIPIF1<0,連接SKIPIF1<0,所以SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以四邊形SKIPIF1<0是平行四邊形,所以SKIPIF1<0.因?yàn)镾KIPIF1<0平面SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0平面SKIPIF1<0.3.(2022·吉林·長春市第五中學(xué))如圖,已知四棱錐SKIPIF1<0的底面是直角梯形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為側(cè)棱SKIPIF1<0的中點(diǎn),求證:SKIPIF1<0平面SKIPIF1<0【答案】證明見解析【解析】取SKIPIF1<0的中點(diǎn)SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0在梯形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0,SKIPIF1<0,∴四邊形SKIPIF1<0是平行四邊形,∴SKIPIF1<0,而SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0平面SKIPIF1<0;4.(2022·遼寧撫順·高一期末)在正方體SKIPIF1<0中,SKIPIF1<0分別是SKIPIF1<0和SKIPIF1<0的中點(diǎn).求證:(1)SKIPIF1<0SKIPIF1<0平面SKIPIF1<0.(2)平面SKIPIF1<0SKIPIF1<0平面SKIPIF1<0.【答案】(1)證明見解析(2)證明見解析【解析】(1)連接SKIPIF1<0,因?yàn)樗倪呅蜸KIPIF1<0為正方形,SKIPIF1<0為SKIPIF1<0中點(diǎn),所以SKIPIF1<0為SKIPIF1<0中點(diǎn),又因?yàn)镾KIPIF1<0為SKIPIF1<0中點(diǎn),所以SKIPIF1<0.因?yàn)镾KIPIF1<0平面SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0平面SKIPIF1<0,連接SKIPIF1<0,因?yàn)樗倪呅蜸KIPIF1<0為正方形,SKIPIF1<0為SKIPIF1<0中點(diǎn),所以SKIPIF1<0為SKIPIF1<0中點(diǎn).又因?yàn)镾KIPIF1<0為SKIPIF1<0中點(diǎn),所以SKIPIF1<0.因?yàn)镾KIPIF1<0平面SKIPIF1<0平面SKIPIF1<0所以SKIPIF1<0SKIPIF1<0平面SKIPIF1<0.由(1)知SKIPIF1<0SKIPIF1<0平面SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以平面SKIPIF1<0SKIPIF1<0平面SKIPIF1<0.5.(2022·遼寧撫順·高一期末)直四棱柱SKIPIF1<0,底面SKIPIF1<0是平行四邊SKIPIF1<0分別是棱SKIPIF1<0的中點(diǎn),求證:SKIPIF1<0SKIPIF1<0平面SKIPIF1<0【答案】見解析【解析】證明:取SKIPIF1<0的中點(diǎn)SKIPIF1<0,連結(jié)SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0分別為SKIPIF1<0的中點(diǎn),所以SKIPIF1<0且SKIPIF1<0,底面SKIPIF1<0是平行四邊形,SKIPIF1<0是棱SKIPIF1<0的中點(diǎn),所以SKIPIF1<0且SKIPIF1<0,所以SKIPIF1<0且SKIPIF1<0,所以四邊形SKIPIF1<0為平行四邊形,所以SKIPIF1<0平面SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0平面SKIPIF1<06.(2022·湖南衡陽)如圖,四棱柱SKIPIF1<0的底面ABCD為正方形,O為BD的中點(diǎn),SKIPIF1<0,求證:平面SKIPIF1<0∥平面SKIPIF1<0【答案】證明見解析【解析】證明:因?yàn)樗睦庵鵖KIPIF1<0的底面ABCD為正方形,所以SKIPIF1<0∥SKIPIF1<0,SKIPIF1<0,SKIPIF1<0∥SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0∥,SKIPIF1<0SKIPIF1<0,所以四邊形SKIPIF1<0為平行四邊形,所以SKIPIF1<0∥SKIPIF1<0.又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0∥平面SKIPIF1<0,同理SKIPIF1<0∥平面SKIPIF1<0.又SKIPIF1<0,所以平面SKIPIF1<0∥平面SKIPIF1<0.7.(2022·福建·廈門市湖濱中學(xué))如圖,在正方體SKIPIF1<0中,SKIPIF1<0為SKIPIF1<0的中點(diǎn),SKIPIF1<0為SKIPIF1<0的中點(diǎn).(1)求證:SKIPIF1<0平面SKIPIF1<0;(2)求證:平面SKIPIF1<0平面SKIPIF1<0.【答案】(1)證明見解析(2)證明見解析【解析】(1)證明:連接SKIPIF1<0交SKIPIF1<0于點(diǎn)SKIPIF1<0,則SKIPIF1<0為SKIPIF1<0的中點(diǎn),因?yàn)镾KIPIF1<0為SKIPIF1<0的中點(diǎn),則SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,因此,SKIPIF1<0平面SKIPIF1<0.(2)證明:因?yàn)镾KIPIF1<0且SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的中點(diǎn),SKIPIF1<0為SKIPIF1<0的中點(diǎn),所以,SKIPIF1<0,SKIPIF1<0,所以,四邊形SKIPIF1<0為平行四邊形,所以,SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以,SKIPIF1<0平面SKIPIF1<0,因?yàn)镾KIPIF1<0,因此,平面SKIPIF1<0平面SKIPIF1<0.題組三等比例題組三等比例1.(2022·江西南昌)兩個(gè)全等的正方形ABCD和ABEF所在平面相交于AB,SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,過M作SKIPIF1<0于H,求證:(1)平面SKIPIF1<0平面BCE;(2)SKIPIF1<0平面BCE.【答案】(1)證明見解析;(2)證明見解析.【解析】(1)在正方形ABCD中,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,因此SKIPIF1<0平面SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,而SKIPIF1<0,SKIPIF1<0,則有SKIPIF1<0,即SKIPIF1<0,于是得SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,則SKIPIF1<0平面SKIPIF1<0,因SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以平面SKIPIF1<0平面SKIPIF1<0.(2)由(1)知:平面SKIPIF1<0平面SKIPIF1<0,而SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0.2.(2022·安徽安慶市)如圖,四棱錐SKIPIF1<0中,底面SKIPIF1<0為直角梯形,且SKIPIF1<0,點(diǎn)M在棱SKIPIF1<0上,若直線SKIPIF1<0平面SKIPIF1<0,求SKIPIF1<0的值【答案】(1)1∶2;【解析】連接SKIPIF1<0與SKIPIF1<0交于點(diǎn)N,連接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,且平面SKIPIF1<0平面SKIPIF1<0SKIPIF1<0SKIPIF1<0.3.(2021·全國高三)如圖,三棱柱SKIPIF1<0在圓柱中,等腰直角三角形SKIPIF1<0,SKIPIF1<0分別為上、下底面的內(nèi)接三角形,點(diǎn)SKIPIF1<0,SKIPIF1<0分別在棱SKIPIF1<0和SKIPIF1<0上,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,求SKIPIF1<0的值【答案】SKIPIF1<0【解析】過SKIPIF1<0點(diǎn)作SKIPIF1<0交SKIPIF1<0于點(diǎn)SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0與SKIPIF1<0確定一個(gè)平面.SKIPIF1<0平面SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,SKIPIF1<0四邊形SKIPIF1<0為平行四邊形,SKIPIF1<0.又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.4.(2022·福建?。┤鐖D,在三棱柱SKIPIF1<0中,側(cè)面SKIPIF1<0是菱形,SKIPIF1<0是棱SKIPIF1<0的中點(diǎn),SKIPIF1<0,SKIPIF1<0在線段SKIPIF1<0上,且SKIPIF1<0,證明:SKIPIF1<0平面SKIPIF1<0【答案】證明見解析【解析】連接SKIPIF1<0交SKIPIF1<0于點(diǎn)SKIPIF1<0,連接SKIPIF1<0,因?yàn)樗倪呅蜸KIPIF1<0為菱形,則SKIPIF1<0且SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的中點(diǎn),則SKIPIF1<0且SKIPIF1<0,故SKIPIF1<0,所以,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,因此,SKIPIF1<0平面SKIPIF1<0;5(2022·安徽)如圖,多面體SKIPIF1<0中,底面SKIPIF1<0為等腰梯形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,求證:SKIPIF1<0平面SKIPIF1<0【答案】證明見解析【解析】SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0.設(shè)SKIPIF1<0,連結(jié)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,又SKIPIF1<0,所以四邊形SKIPIF1<0為平行四邊形,SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0.6.(2022福建)如圖,在四棱錐SKIPIF1<0中,四邊形SKIPIF1<0是梯形,SKIPIF1<0.SKIPIF1<0,證明:SKIPIF1<0平面SKIPIF1<0【答案】證明見解析【解析】證明:SKIPIF1<0四邊形SKIPIF1<0是梯形且SKIPIF1<0,又SKIPIF1<0SKIPIF1<0,又SKIPIF1<0SKIPIF1<0,SKIPIF1<0是等腰直角三角形.SKIPIF1<0,SKIPIF1<0,如圖,連接SKIPIF1<0交SKIPIF1<0于點(diǎn)SKIPIF1<0連接SKIPIF1<0.SKIPIF1<0,SKIPIF1<0在SKIPIF1<0中,由余弦定理得SKIPIF1<0解得SKIPIF1<0故SKIPIF1<0又點(diǎn)SKIPIF1<0在棱SKIPIF1<0上,且SKIPIF1<0SKIPIF1<0在SKIPIF1<0中,SKIPIF1<0又SKIPIF1<0平面SKIPIF1<0平面SKIPIF1<0故SKIPIF1<0平面SKIPIF1<0;題組四題組四線面平行的性質(zhì)1.(2022·北京市第十三中學(xué))如圖,已知在四棱錐SKIPIF1<0中,底面SKIPIF1<0是平行四邊形,SKIPIF1<0為SKIPIF1<0的中點(diǎn),在SKIPIF1<0上任取一點(diǎn)SKIPIF1<0,過SKIPIF1<0和SKIPIF1<0作平面SKIPIF1<0交平面SKIPIF1<0于SKIPIF1<0.(1)求證:SKIPIF1<0平面SKIPIF1<0;(2)求證:SKIPIF1<0平面SKIPIF1<0;(3)求證:SKIPIF1<0.【答案】證明見解析【解析】(1)證明:因?yàn)樗倪呅蜸KIPIF1<0為平行四邊形,則SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,因此,SKIPIF1<0平面SKIPIF1<0.(2)證明:連接SKIPIF1<0交SKIPIF1<0于點(diǎn)SKIPIF1<0,連接SKIPIF1<0,因?yàn)樗倪呅蜸KIPIF1<0為平行四邊形,SKIPIF1<0,則SKIPIF1<0為SKIPIF1<0的中點(diǎn),又因?yàn)镾KIPIF1<0為SKIPIF1<0的中點(diǎn),則SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0.

SKIPIF1<0(3)證明:SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0.2.(2022·山東·濟(jì)南市章丘區(qū)第四中學(xué))如圖,四邊形ABCD為長方形,SKIPIF1<0平面ABCD,SKIPIF1<0,SKIPIF1<0,點(diǎn)E、F分別為AD、PC的中點(diǎn).設(shè)平面SKIPIF1<0平面SKIPIF1<0.(1)證明:SKIPIF1<0平面PBE;(2)證明:SKIPIF1<0;【答案】證明見解析【解析】取PB中點(diǎn)SKIPIF1<0,連接FG,EG,因?yàn)辄c(diǎn)E、F分別為AD、PC的中點(diǎn)所以SKIPIF1<0,SKIPIF1<0,因?yàn)樗倪呅蜛BCD為長方形,所以SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以四邊形DEGF為平行四邊形,所以SKIPIF1<0因?yàn)镾KIPIF1<0平面PBE,SKIPIF1<0平面PBE,SKIPIF1<0平面PBE(2)由(1)知SKIPIF1<0平面PBE,又SKIPIF1<0平面PDC,平面SKIPIF1<0平面SKIPIF1<0所以SKIPIF1<03.(2022云南)如圖,在幾何體ABCDEF中,四邊形ABCD為平行四邊形,G為FC的中點(diǎn),平面ABFE∩平面CDEF=EF(1)證明:AF//平面BDG(2)證明:AB//EF【答案】(1)證明見解析.(2)證明見解析.【解析】(1)連接AC交BD于O,連接OG.因?yàn)樗倪呅蜛BCD為平行四邊形,所以AC、BD互相平分.又G為FC的中點(diǎn),所以O(shè)G為三角形ACF的中位線,所以SKIPIF1<0.因?yàn)镾KIPIF1<0面SKIPIF1<0,SKIPIF1<0面SKIPIF1<0,所以AF//平面BDG.(2)因?yàn)樗倪呅蜛BCD為平行四邊形,所以AB//CD.因?yàn)镾KIPIF1<0面SKIPIF1<0,SKIPIF1<0面SKIPIF1<0,所以AB//平面SKIPIF1<0.因?yàn)镾KIPIF1<0面SKIPIF1<0,面SKIPIF1<0SKIPIF1<0面SKIPIF1<0=EF.所以AB//EF.4.(2022·北京海淀·高三期末)如圖,已知長方體SKIPIF1<0中,SKIPIF1<0為SKIPIF1<0的中點(diǎn),平面SKIPIF1<0交棱SKIPIF1<0于點(diǎn)F,求證:SKIPIF1<0【答案】證明見解析;【解析】由長方體的性質(zhì)知:面SKIPIF1<0SKIPIF1<0面SKIPIF1<0,又SKIPIF1<0面SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0面SKIPIF1<0,又面SKIPIF1<0面SKIPIF1<0SKIPIF1<0,且SKIPIF1<0面SKIPIF1<0,∴SKIPIF1<0.5.(2022·全國·高三專題練習(xí)(理))如圖,在長方體SKIPIF1<0中,點(diǎn)SKIPIF1<0是SKIPIF1<0的中點(diǎn),SKIPIF1<0在SKIPIF1<0上,若過SKIPIF1<0的平面SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,交SKIPIF1<0于SKIPIF1<0,求證:SKIPIF1<0SKIPIF1<0平面SKIPIF1<0【答案】證明見解析【解析】證明:因?yàn)槠矫鍿KIPIF1<0SKIPIF1<0,平面SKIPIF1<0,平面SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0;6.(2022·全國·高三專題練習(xí))如圖,已知正方體SKIPIF1<0的棱長為2,SKIPIF1<0是SKIPIF1<0的中點(diǎn).設(shè)平面SKIPIF1<0與平面SKIPIF1<0的交線為l,求證:SKIPIF1<0平面SKIPIF1<0【答案】證明見解析【解析】證明:在正方體SKIPIF1<0中,平面SKIPIF1<0平面SKIPIF1<0,又因?yàn)槠矫鍿KIPIF1<0平面SKIPIF1<0=l,平面SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0,又因?yàn)镾KIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0.7.(2022·全國·高三專題練習(xí))如圖,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,求證:SKIPIF1<0【答案】證明見解析【解析】由題意SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0平面SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,∴平面SKIPIF1<0平面SKIPIF1<0,而平面SKIPIF1<0平面SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0.8.(2022·全國·高三專題練習(xí))在三棱柱SKIPIF1<0中,(1)若SKIPIF1<0分別是SKIPIF1<0的中點(diǎn),求證:平面SKIPIF1<0平面SKIPIF1<0.(2)若點(diǎn)SKIPIF1<0分別是SKIPIF1<0上的點(diǎn),且平面SKIPIF1<0平面SKIPIF1<0,試求SKIPIF1<0的值.【答案】(1)證明見解析;(2)1.【解析】(1)∵SKIPIF1<0分別是SKIPIF1<0的中點(diǎn),∴SKIPIF1<0,∵SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0平面SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴四邊形SKIPIF1<0是平行四邊形,∴SKIPIF1<0,又∵SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0平面SKIPIF1<0,又∵SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,∴平面SKIPIF1<0平面SKIPIF1<0;(2)連接SKIPIF1<0交SKIPIF1<0于O,連接SKIPIF1<0,由平面SKIPIF1<0平面SKIPIF1<0,且平面SKIPIF1<0平面SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0,則SKIPIF1<0,又由題設(shè)SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0.題組五題組五面面平行的性質(zhì)1.(2022·四川成都)如圖,四邊形ABCD為長方形,SKIPIF1<0,SKIPIF1<0,點(diǎn)E、F分別為AD、PC的中點(diǎn).設(shè)平面SKIPIF1<0平面SKIPIF1<0.(1)證明:SKIPIF1<0平面PBE;(2)證明:SKIPIF1<0.【答案】(1)證明見解析;(2)證明見解析;【解析】(1)取PB中點(diǎn)SKIPIF1<0,連接FG,EG,因?yàn)辄c(diǎn)E、F分別為AD、PC的中點(diǎn),所以SKIPIF1<0,SKIPIF1<0,因?yàn)樗倪呅蜛BCD為長方形,所以SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以四邊形DEGF為平行四邊形,所以SKIPIF1<0因?yàn)镾KIPIF1<0平面PBE,SKIPIF1<0平面PBE,SKIPIF1<0平面PBE;由(1)知SKIPIF1<0平面PBE,又SKIPIF1<0平面PDC,平面SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0.2.(2022·山東淄博·高一期末)如圖,已知正方體SKIPIF1<0的棱長為SKIPIF1<0,SKIPIF1<0、SKIPIF1<0分別為棱SKIPIF1<0、SKIPIF1<0的中點(diǎn),證明:直線SKIPIF1<0平面SKIPIF1<0【答案】證明見解析【解析】證明:取SKIPIF1<0的中點(diǎn)SKIPIF1<0,連接SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,在正方體SKIPIF1<0中,SKIPIF1<0且SKIPIF1<0,SKIPIF1<0、SKIPIF1<0分別為SKIPIF1<0、SKIPIF1<0的中點(diǎn),則SKIPIF1<0且SKIPIF1<0,故四邊形SKIPIF1<0為平行四邊形,則SKIPIF1<0且SKIPIF1<0,又因?yàn)镾KIPIF1<0且SKIPIF1<0,則SKIPIF1<0且SKIPIF1<0,故四邊形SKIPIF1<0為平行四邊形,則SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,因?yàn)镾KIPIF1<0且SKIPIF1<0,故四邊形SKIPIF1<0為平行四邊形,則SKIPIF1<0,SKIPIF1<0、SKIPIF1<0分別為SKIPIF1<0、SKIPIF1<0的中點(diǎn),則SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,SKIPIF1<0、SKIPIF1<0平面SKIPIF1<0,所以,平面SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0.3.(2022·江蘇省鎮(zhèn)江第一中學(xué))如圖,三棱柱SKIPIF1<0中側(cè)棱與底面垂直,M,N,P,D分別為CC1,BC,AB,SKIPIF1<0的中點(diǎn),求證:PN∥面ACC1A1【答案】證明見解析【解析】∵P,D分別為SKIPIF1<0,SKIPIF1<0的中點(diǎn),∴SKIPIF1<0,且SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0平面SKIPIF1<0,∵D,N分別為SKIPIF1<0,BC的中點(diǎn),∴SKIPIF1<0,且SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0平面SKIPIF1<0,又SKIPIF1<0,∴平面SKIPIF1<0平面SKIPIF1<0,又∵SKIPIF1<0平面PDN,∴SKIPIF1<0平面SKIPIF1<0.4.(2022·河南駐馬店)如圖所示,在直角梯形BCEF中,SKIPIF1<0,A,D分別是BF,CE上的點(diǎn),且SKIPIF1<0,SKIPIF1<0,將四邊形ADEF沿AD折起,連接BE,BF,CE,AC,證明:SKIPIF1<0面BEF【答案】證明見解析【解析】方法一:取ED中點(diǎn)H,連接HA,HC,HF,如下圖:由題意SKIPIF1<0可知SKIPIF1<0,即四邊形AFEH為平行四邊形,可得SKIPIF1<0,SKIPIF1<0面EFB,SKIPIF1<0面EFB,可得SKIPIF1<0面EFB,四邊形AFHD為平行四邊形,則SKIPIF1<0,SKIPIF1<0,可得四邊形BCHF為平行四邊形,則SKIPIF1<0,SKIPIF1<0面EFB,SKIPIF1<0面EFB,可得SKIPIF1<0面EFB,SKIPIF1<0,SKIPIF1<0面AHC,SKIPIF1<0面AHC,根據(jù)面面平行的判定定理可得面SKIPIF1<0面AHC,SKIPIF1<0面AHC,從而可得SKIPIF1<0面EFB.方法二:在面AFED內(nèi),延長EF,DA交于G點(diǎn),連接BG,如下圖:則SKIPIF1<0面EFB.由條件SKIPIF1<0,則SKIPIF1<0.從而可得SKIPIF1<0,四邊形AGBC為平行四邊形.可得SKIPIF1<0,又SKIPIF1<0面EFB,SKIPIF1<0面EFB,根據(jù)線面平行的判定定理可得SKIPIF1<0面EFB.5.(2022·湖南)如圖,在長方體SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0分別是線段SKIPIF1<0,SKIPIF1<0的中點(diǎn).證明:SKIPIF1<0平面SKIPIF1<0【答案】證明見解析【解析】設(shè)SKIPIF1<0為SKIPIF1<0的中點(diǎn),連接SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,所以平面SKIPIF1<0平面SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0;6.(2022·重慶八中高三階段練習(xí))如圖,在四棱錐SKIPIF1<0中,底面SKIPIF1<0是正方形,SKIPIF1<0與SKIPIF1<0相交于點(diǎn)O,F(xiàn)點(diǎn)是SKIPIF1<0的中點(diǎn),E點(diǎn)在線段SKIPIF1<0上,且SKIPIF1<0.求證:直線SKIPIF1<0∥平面SKIPIF1<0【答案】證明見解析;【解析】取SKIPIF1<0的中點(diǎn)SKIPIF1<0,連接CG、GF、EO.∵SKIPIF1<0,則SKIPIF1<0,∵SKIPIF1<0點(diǎn)是SKIPIF1<0的中點(diǎn),故SKIPIF1<0,且SKIPIF1<0平面SKIPIF1<0,故SKIPIF1<0SKIPIF1<0平面SKIPIF1<0.又SKIPIF1<0,故SKIPIF1<0是SKIPIF1<0的中點(diǎn),SKIPIF1<0是SKIPIF1<0的中點(diǎn),則SKIPIF1<0,且SKIPIF1<0平面SKIPIF1<0,故SKIPIF1<0SKIPIF1<0平面SKIPIF1<0,且SKIPIF1<0,故平面SKIPIF1<0SKIPIF1<0平面SKIPIF1<0.又SKIPIF1<0平面SKIPIF1<0,故SKIPIF1<0SKIPIF1<0平面SKIPIF1<0.題組六題組六線面垂直的性質(zhì)1.(2022·河南南陽)如圖,已知SKIPIF1<0是正三角形,SKIPIF1<0、SKIPIF1<0都垂直于平面SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的中點(diǎn).求證:SKIPIF1<0平面SKIPIF1<0【答案】證明見解析【解析】證明:取SKIPIF1<0的中點(diǎn)SKIPIF1<0,連接SKIPIF1<0、SKIPIF1<0,因?yàn)镾KIPIF1<0、SKIPIF1<0都垂直于平面SKIPIF1<0,則SKIPIF1<0且SKIPIF1<0,因?yàn)镾KIPIF1<0、SKIPIF1<0分別為SKIPIF1<0、SKIPIF1<0的中點(diǎn),則SKIPIF1<0且SKIPIF1<0,SKIPIF1<0且SKIPIF1<0,所以,四邊形SKIPIF1<0為平行四邊形,則SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0.2.(2022·廣東揭陽)圓柱SKIPIF1<0如圖所示,SKIPIF1<0為下底面圓的直徑,SKIPIF1<0為上底面圓的直徑,SKIPIF1<0底面SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.證明:SKIPIF1<0面SKIPIF1<0【答案】見解析【解析】證明:連接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0平面SKIPIF1<0,∵SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴四邊形SKIPIF1<0為平行四邊形,∴SKIPIF1<0,∴SKIPIF1<0且SKIPIF1<0,∴四邊形SKIPIF1<0為平行四邊形,∴SKIPIF1<0,∵SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0平面SKIPIF1<0;3.(2022·山西臨汾

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論