版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
LaborMarketExposuretoAI:Cross-country
Differencesand
DistributionalImplications
CarloPizzinelli,AugustusPanton,MarinaM.Tavares,MauroCazzaniga,LongjiLi
WP/23/216
IMFWorkingPapersdescriberesearchin
progressbytheauthor(s)andarepublishedto
elicitcommentsandtoencouragedebate.
TheviewsexpressedinIMFWorkingPapersare
thoseoftheauthor(s)anddonotnecessarily
representtheviewsoftheIMF,itsExecutiveBoard,
orIMFmanagement.
NAr
2023
ARY
OCT
*TheauthorswouldliketothankFlorenceJaumotte,GiovanniMelina,andEmmaRockallforhelpfulcomments.
?2023InternationalMonetaryFund
WP/23/216
IMFWorkingPaper
ResearchDepartment
LaborMarketExposuretoAI:Cross-countryDifferencesandDistributionalImplications
PreparedbyCarloPizzinelli,AugustusPanton,MarinaM.Tavares,MauroCazzaniga,LongjiLi
AuthorizedfordistributionbyFlorenceJaumotte
October2023
IMFWorkingPapersdescriberesearchinprogressbytheauthor(s)andarepublishedtoelicit
commentsandtoencouragedebate.TheviewsexpressedinIMFWorkingPapersarethoseofthe
author(s)anddonotnecessarilyrepresenttheviewsoftheIMF,itsExecutiveBoard,orIMFmanagement.
ABSTRACT:ThispaperexaminestheimpactofArtificialIntelligence(AI)onlabormarketsinbothAdvancedEconomies(AEs)andEmergingMarkets(EMs).WeproposeanextensiontoastandardmeasureofAI
exposure,accountingforAI'spotentialaseitheracomplementorasubstituteforlabor,wherecomplementarityreflectslowerrisksofjobdisplacement.Weanalyzeworker-levelmicrodatafrom2AEs(USandUK)and4
EMs(Brazil,Colombia,India,andSouthAfrica),revealingsubstantialvariationsinunadjustedAIexposure
acrosscountries.AEsfacehigherexposurethanEMsduetoahigheremploymentshareinprofessionalandmanagerialoccupations.However,whenaccountingforpotentialcomplementarity,differencesinexposure
acrosscountriesaremoremuted.Withincountries,commonpatternsemergeinAEsandEMs.Womenand
highlyeducatedworkersfacegreateroccupationalexposuretoAI,atbothhighandlowcomplementarity.
Workersintheuppertailoftheearningsdistributionaremorelikelytobeinoccupationswithhighexposurebutalsohighpotentialcomplementarity.
RECOMMENDEDCITATION:Pizzinelli,C.,A.Panton,M.M.Tavares,M.Cazzaniga,andL.Li,(2023)“Labor
MarketExposuretoAI:Cross-countryDifferencesandDistributionalImplication.”IMFWokringPaper23/216
JELClassificationNumbers:
J23,O33
Keywords:
Artificialintelligence;Employment;Occupations;EmergingMarkets
Author’sE-MailAddress:
cpizzinelli@,apanton@,mmendestavares@,mauro98cazzaniga@,lli4@,
LaborMarketExposuretoAI:Cross-country
DifferencesandDistributionalImplications
CarloPizzinelli*
IMF
AugustusPanton
IMF
MarinaM.Tavares*
IMF
MauroCazzanigaLongjiLi
FGV-SPIMF
September22,2023
Abstract
ThispaperexaminestheimpactofArtificialIntelligence(AI)onlabormarketsinbothAdvancedEconomies(AEs)andEmergingMarkets(EMs).WeproposeanextensiontoastandardmeasureofAIexposure,accountingforAI’spotentialaseitheracom-plementorasubstituteforlabor,wherecomplementarityreflectslowerrisksofjobdisplacement.Weanalyzeworker-levelmicrodatafrom2AEs(USandUK)and4EMs(Brazil,Colombia,India,andSouthAfrica),revealingsubstantialvariationinunadjustedAIexposureacrosscountries.AEsfacehigherexposurethanEMsduetoahigheremploymentshareinprofessionalandmanagerialoccupations.However,whenaccountingforpotentialcomplementarity,differencesinexposureacrosscountriesaremoremuted.Withincountries,commonpatternsemergeinAEsandEMs.WomenandhighlyeducatedworkersfacegreateroccupationalexposuretoAI,atbothhighandlowcomplementarity.Workersintheuppertailoftheearningsdistributionaremorelikelytobeinoccupationswithhighexposurebutalsohighpotentialcomple-mentarity.
Keywords:Artificialintelligence,Employment,Occupations,EmergingMarketsJELCodes:J23,J23,O33
*Correspondingauthors:CarloPizzinelliandMarinaM.Tavares,InternationalMonetaryFund,70019thSt.NW,Washington,DC,20431,USA.Email:
cpizzinelli@
mmendestavares@
1TheauthorswouldliketothankFlorenceJaumotte,GiovanniMelina,AlexanderCopestake,andEmmaRockallforhelpfulcomments.Disclaimer:TheviewsexpressedinthisstudyarethesoleresponsibilityoftheauthorsandshouldnotbeattributabletotheInternationalMonetaryFund,itsExecutiveBoard,oritsmanagement.
1
1Introduction
TherapiddevelopmentofArtificialIntelligence(AI)hassparkedconsiderablediscus-
sionregardingitsimpactonlabormarkets.1
Byautomatingtasks,personalizingexperiences,andimprovingqualitycontrol,AIcoulddramaticallyenhanceproductivityacrossvarioussectors,presentinganunprecedentedrevolutionintheworkplace.Despitethispromisingoutlook,theswiftprogressofAI,coupledwithcontinuedR&D,createssubstantialuncer-
taintysurroundingitssocioeconomicimplications(LaneandSaint-Martin,
2021;
Agrawal
etal.
,
2018).EconomistslargelyagreethatAIcouldbolstersocietalwealthinthelongrun,
yetconcernspersistoveritspotentialtodisruptemploymentinmanyindustries.
Inthisfast-evolvinglandscape,threesignificantareasofuncertaintystandout.First,itremainsunclearhowAItechnologiesmightserveaseithersubstitutesorcomplementsforhumanlaborinspecifictasksandoccupations,ultimatelyleadingto“winnersandlosers”in
thejobmarket(Autor,
2022).Second,thereisinterestinunderstandinghowexposuretoAI
variesacrosscountries,andinparticularwhethertherearesystematicdifferencesbetweenAdvancedEconomies(AEs)andEmergingMarkets(EMs).Third,withincountries,exposuretotherisksandbenefitsofAIislikelytodifferacrossdemographicgroupsandskilllevels,makingimplicationsforeconomicdisparitiesdifficulttopredict.
Inthispaper,weofferpreliminaryinsightsintothesequestions.First,weproposeanadjustmenttoastandardmeasureofAIoccupationalexposure(AIOE)tocaptureAI’spotentialtocomplementorsubstituteforlaborineachoccupation.Second,weapplyboththeoriginalmeasureandthecomplementarity-adjustedonetolaborforcemicrodatafromsixcountries,withaparticularemphasisonEMs.OuranalysisshedslightondifferencesinexposuretoAIacrosscountries,disentanglingthosewithgreaterpotentialtobenefitfromcomplementarityandthoseatgreaterriskfromsubstitution.Finally,withineachcountry,weexaminehowexposurevariesacrossdemographicgroups,skilllevels,andtheincomedistribution.
Recentresearchhasfocusedon“exposure”toAIacrossthespectrumofoccupations.TheproposeddefinitionsofexposureconsiderhowAIapplicationsoverlapwiththehuman
1IthasbeenarguedthatAIfulfillsthedefinitionofaGeneral-PurposeTechnology(GPT)andthereforeholdsthepotentialtospurasustainedwaveofeconomicgrowthandinnovation.
Lipseyetal.
(2005)define
aGPTasatechnologythat(i)iswidelyused,(ii)hasthepotentialforcontinuousinnovation,(iii)generatescomplementaryinnovations.ExamplesofGPTsarethesteamengine,electricity,andtheinternet.Scholars
generallyagreethatAI,asasuiteoftechnologies,isaGPT(Agrawaletal.,
2018)andpotentiallysome
ofitsindividualsub-fields,suchasGenerativeAIandMachineLearning,individuallyfulfillthedefinition
(Goldfarbetal.,
2023)
.
2
abilitiesneededtoperformagivenoccupation(asintheAIOEindexof
Feltenetal.,
2021,
2023)orcouldsignificantlyacceleratetheperformanceoftasksineachjob(Eloundouetal.,
2023
;
BriggsandKodnani,
2023).Sodefined,thisconceptpurposelyremainsagnostictothe
potentialforAItoserveaseitherasubstituteorcomplementforhumanlaborinkeytasksandpossiblytoreplaceanoccupationaltogether.Giventhelargedegreeofuncertaintyregardingfutureinnovationsandtheirapplicationtospecificproductiveprocesses,precisepredictionsarechallengingandrequiresignificantcaveats.Nevertheless,itisimportantforacademicsandpolicymakerstoconsidertheconsequencesofAI’sinteractionswitheachoccupation.Forinstance,workersinoccupationsmorevulnerabletosubstitutionbyAIwillbemorelikelytoexperienceadverseincomeshockswhilethoseincomplementedoccupationscouldexperiencehigherreturnstotheirlabor.SuchexercisewouldallowforaninformeddiscussionofhowAImayposegreaterrisksofadverselabormarketoutcomesforsomeworkersandgreateropportunitiesforothers,drawingaggregateimplicationsforitseconomy-wideimpact.
ThispaperthuscontributestothedebateonhowAImayimpactthelabormarketbyproposinganextensiontothewidelyusedAIOccupationalExposure(AIOE)measureby
Feltenetal.
(2021)toaccountforpotentialcomplementarity.
Tothisaim,wefirstbuildanindexofpotentialforAIcomplementarityattheoccupationlevelbasedonthesamedatasourceusedbytheseauthors,theOccupationalInformationNetwork(O*NET)repository.Specifically,wedrawontwoareasofO*NET:workcontextsandoccupations’“jobzones”.Theformercapture“physicalandsocialfactorsthatinfluencethenatureofwork”,andhenceareinformativeofthelikelihoodthatkeyactivitiesofanoccupationwouldbeassignedtoAIwithouthumansupervision-thatis,asasubstitutetolabor.Forinstance,societyispresumablylesslikelytofullydelegatetoAIincontextsinwhichtherearegraveconsequencestoerrors,likepilotinganairplaneordiagnosingdiseases.Meanwhile,jobzonesreflecttheamountofeducationandtrainingrequiredtoperformanoccupation.LongertrainingmayentailgreaterabilitytointegratetheknowledgeneededtooperateAIintotheskillsetofanoccupation,translatingintogreaterpotentialtousethetechnologytosupporthumantasks.
Equippedwiththisindex,wethenconstructacomplementarity-adjustedAIoccu-pationalexposure(C-AIOE)measure,wheretheexposureofoccupationsismitigatedbytheirpotentialforcomplementarity.Inthisalternativemeasure,ahighervalueofexposuremorecloselycorrespondstogreaterriskofsubstitutionandhenceofanadverselabormarketeffectfromAI.Wefindthatsomehigh-skilloccupationalgroupswithhighexposuretoAI,suchasprofessionalsandmanagers,alsoholdthehighestpotentialforcomplementarityandthushavelowC-AIOEvalues.Meanwhile,clericalsupportoccupationsarehighlyexposed
3
buthaveonaveragelowcomplementarity,thereforescoringhighestintheC-AIOEmeasure.
AsecondquestionconcernsthemagnitudeofdisparitiesinAIexposureacrosscoun-triesandwhether,withineachcountry,similarpatternsemergeinhowexposureisdistributedacrossthelaborforce.MostoftheanalysisofexposuresofarhasfocusedonAdvancedEconomies(AEs),withonlylimiteddiscussionofEmergingMarkets(EMs).Thislattergroupofcountries,encompassingawiderangeofdiverseeconomicrealities,ischaracterizedbydistinctlabormarketcompositionswithrespecttooccupationsandworkerdemographics.LabormarketexposuretoAIinEMs,anditsdifferenceswithAEs,hencedeserveadeeperdiscussion.
Thesecondcontributionofthispaperisthustoprovideadetailedcross-countryanalysisofAIexposureusingworker-levelmicrodatafromsixeconomies:twoadvancedeconomies(UKandUS)andfourEMs(Brazil,Colombia,India,SouthAfrica).WecombinemicrodatafromrecentlaborforcesurveyswiththeAIOEandC-AIOEmeasuresataverygranularoccupationallevel(morethan400ISCO-08codes)topaintadetailedpictureofAIexposurebothacrosscountriesandwithineachcountry.Theuseofmicrodataalsoallowsforadeeperanalysisofheterogeneitythroughoutthelabormarketofindividualcountries,basedondemographicgroupsandalongtheincomedistribution,uncoveringsimilaritiesanddifferencesinexposurepatternsinAEsandEMs.
Themainfindingscanbesummarizedasfollows.Therearesubstantialcross-countrydisparitiesinthebaselineAIOE,withEMsgenerallyexhibitinglowerexposurelevelsthanAEs.Thisvariationprimarilyhingesondifferentemploymentcompositions,withAEschar-acterizedbylargerproportionsofhigh-skilloccupationssuchasprofessionalsandmanagers.Inlinewiththefindingsofpreviousstudies,theseprofessionsarethemostexposedtoAI
duetotheirhighconcentrationofcognitive-basedtasks(Feltenetal.,
2021,
2023;
Briggs
andKodnani
,
2023;
Eloundouetal.,
2023)
.However,becausethosehigh-skilloccupationsalsoshowhigherpotentialforAIcomplementarity,thesecross-countrydisparitiesintermsofpotentiallydisruptiveexposurediminishsignificantlyoncecomplementarityisfactoredin.Nevertheless,AEsremainmoreexposedevenundertheC-AIOEmeasure.Meanwhile,EMswithalargeshareofagriculturalemployment,likeIndia,remainrelativelylessexposedunderbothmeasures,asoccupationsinthissectorhaveverylowbaselineexposuretoAI.Overall,theresultssuggestthattheimpactofAIonlabormarketsinAEsmaybemore“polarized,”astheiremploymentstructurebetterpositionsthemtobenefitfromgrowthopportunitiesbutalsomakesthemmorevulnerabletolikelyjobdisplacements.
4
Ouranalysisuncoverswithin-countrydisparitiesinAIexposure,bothadjustedandunadjusted,acrossdemographicvariablessuchasgender,education,andage,amongbothEMsandAEs.Thesepatternsexhibitnotableparallelsacrosscountries.WomenaremoreexposedtoAIthanmeninalmostallcountriesinoursample,primarilyduetotheirpre-dominantemploymentinmiddle-skillserviceandretailoccupations,whichbeararelativelyhigherexposurethanmanuallaborroles.TheonlyexceptionisIndia,wherewomenhavelowerexposurethanmenduetotheirsubstantialemploymentinagriculture.Intermsofeducationalattainment,inbothAEsandEMsworkerswithatleastacollegedegreearemoreexposedthanthosewithlowereducationalcredentials.However,theformeralsocarryagreaterpotentialtobenefitfromAIduetotheirconcentrationinprofessionalandman-agerialjobs.Nocommonresultsemergewithrespecttoage,mostlikelyduetocomplexinteractionswithcountry-specificseculartrendsineducationalattainmentandfemalelaborforceparticipation.
Withrespecttoexposureacrossthedistributionofearnings,asignificantfindingemerges.High-incomeworkersaremoreexposedtoAI.However,consistentwiththeirgener-allyhighereducationalattainment,thisdifferenceismostlyaccountedforbyemploymentinoccupationswithhighpotentialcomplementarity.Meanwhile,employmentinhigh-exposurebutlow-complementarityjobsisevenlydistributedacrossthedistribution.Thisresultsug-geststhatwhilethepotentialadverseimpactmaybemoreevenlyspreadacrosstheincomedistribution,thebenefitsarepredominantlyconcentratedatthetop.
OurpaperrelatestothegrowingnumberofworksontheimpactofAIonlabormarkets.Themajorityofempiricalstudiesfocusindetailonvariationinexposureexclusively
intheUS(Feltenetal.,
2021,
2023;
Eloundouetal.,
2023;
Webb,
2020).2
OECD
(2023),
Albanesietal.
(2023),
BriggsandKodnani
(2023),
Gmyreketal.
(2023)provideacross
-
countryperspective,butonlythelattertwoconsiderexposureinEMs.3
BriggsandKodnani
(2023)conductabroadsectoralanalysisextrapolatingfromcoarseindustry-levelmeasures
ofexposureconstructedfortheUS.
Gmyreketal.
(2023)havealargecoverageofEMs
andlow-incomeeconomiesattheoccupationallevelwithvaryingdegreesofgranularity.Usingmicrodata,ourworkinsteadconductsagranularcomparisonofEMsandAEsbothattheaggregatelevelandwithincountries.WethusdelvedeeperintopatternsofAIexposureacrossdemographicgroupsandtheincomedistribution,providingamorerefined
2Brynjolfssonetal.
(2018)study“automation”oftasksbutfocusonMachineLearning,whichisan
importantbutsmallsubsetAI.
3Copestakeetal.
(2023)areanexampleofanempiricalstudyoftheearlyimpactofAIonasingleEM
economy.
5
identificationofpotential“winners”and“l(fā)osers”inEMs.
Severalstudieshavemademethodologicalcontributionsbydevelopingmeasuresof
occupation-levelexposuretoAI(Feltenetal.,
2023;
Eloundouetal.,
2023;
Webb,
2020;
BriggsandKodnani,
2023)
.ThroughtheO*NETrepository,theseworksconstructmea-suresofexposurethataregenerallyagnosticregardingthelikelihoodofAIcomplementingorsubstitutingforhumanlaborinagiventask,activity,oroccupation.Followingthelong-standingliteratureonroutine-biasedautomation,recentworksmakingadistinctionbetween
complementarityandsubstitutionhaveadoptedatask-basedframework(AcemogluandRe-
strepo
,
2018,
2022;
Autoretal.,
2022;
Gmyreketal.,
2023).Despiteitsrigorousconceptual
-izationoftheinteractionsbetweenhumanandmachineabilities,asacknowledgedby
Autor
(2022),thetaskmodelalsohassomelimitationswhenappliedtoAI.First,asthetechnology
continuestodevelop,itisdifficulttosaywhattasksAIcanandcannotperformfullyunsu-pervised.Second,thisapproachholdsanarrowviewonthefactorsdeterminingwhichjobsareexposedtoreplacementfromAI.RecentstudiesfromtheOECD,basedonsurveysofworkersandfirms,clearlyshowtherichvarietyofconcernsandindividualexperiencesinAI
adoption(Laneetal.,
2023;
Milanez,
2023).Ourcontributionisthustoconstructameasure
ofcomplementaritytoAIbyexaminingabroadsetoffactorsbeyondtasks,relatedtothesocialandphysicalcontextinwhichworkisperformed.Wethusprovideamorenuancedviewofwhichoccupationsandworkersfacethegreatestrisksandopportunitiesintheyearsahead.
Ourmethodologynaturallycarriescaveats.First,theselectionofcontextsfromO*NETreliesonourownjudgementofwhichfactorsmatterfortheinteractionbetweenAIandworkers.However,wepresentasetofteststoshowthatthesecontextsarenotallsystematicallyrelatedtoeachotherandthusofferamultifacetedtakeonpotentialcomple-mentarity,factoringinapluralityofangles.WealsotesttherobustnessoftheC-AIOEtodifferentspecificationsoftheadjustment.Furthermore,weacknowledgethattheimportanceofcomplementarityreliesonsocietalviewsandonotherinnovationstosupportAI.AsAItechnologyimprovesinprecisionandgarnersincreasedtrust,thelikelihoodofitsupplantinghumantasks–eveninoccupationscharacterizedbyhighlevelsofresponsibility,criticality,andskills–maygrow.Consequently,theapplicabilityoftheconceptproposedinthispapercoulddecreaseovertime.Toillustratethispoint,wediscussanexerciseinwhichtheweightgiventocomplementarityintheadjustmentcanbealtered.
Beforeconcludingwealsomakefurtherconsiderationsontheinterpretationoftheresultsandthescopeforfutureanalysis.Forinstance,ourproposedadjustmenttotheAIOE
6
measuredoesnotimplythatworkersinexposedoccupationswithhighcomplementaritydonotfaceanyriskofdisplacement.ComplementaritycanonlybeleveragedifindividualworkerspossesstheskillsneededtotakeadvantageofAIasasupportingtechnology.Withoutsuchabilities,workersinthoseoccupationswouldstillfacereducedemploymentprospectseveniftheoccupationasawholemayexperiencerisingdemand.Moreover,ourapproachonlymeasurescross-countrydifferencesbasedonoccupationalcomposition,abstractingfrommacro-factorssuchastheavailabilityofinfrastructureneededtoimplementAIandthepotentialdifferenceinthetaskcompositionofoccupationsacrosscountries.
Theremainderofthepaperisstructuredasfollows.Section
2
introducestheconceptofcomplementarityandproposesapotentialcomplementarity-adjustedexposuremeasure.Section
3
describesthecountry-specificdatasourcesusedfortheanalysis.Sections
4-5
presentthemainfindingsandthesensitivityanalysis.Section
6
providesfurtherdiscussionoftheresults.Finally,Section
7
concludes.
2AIExposureandAdjustingforPotentialComple-
mentarity
Inthissection,wediscusstheimportanceofaddingthepotentialforcomplementarityorsubstitutabilityasadimensionforunderstandinghowAIexposureattheoccupationallevelcanposebothrisksandopportunities.
2.1Motivation
RecentanalyseshavefocusedtheirattentiononAIexposure.Whileitsprecisedefinitionvariesacrossstudies,exposurereflectsthepotentialforAItobeintegratedintoeachoccupationbasedthetasksandskillsthatcharacterizeeachjob.Giventhehighdegreeofuncertaintyoverthefutureofthisfast-pacingandbroadlyapplicabletechnology,theconceptofexposureispurposelyframedasagnosticonthelikelihoodofAIcomplementingorreplacinglaborintheperformanceofagiventaskoroccupation.Forinstance,theAIOEindexby
Feltenetal.
(2021)measuresthedegreeofoverlapbetweenmainAIapplications
andtheabilitiesneededtoperformanoccupationeffectively.4
4InthecontextofGenerativeAI,
Eloundouetal.
(2023)defineexposure“asameasureofwhether
accessto[LargeLanguageModels]wouldreducethetimerequiredforahumantoperformaspecific[workactivity]orcompleteataskbyatleast50percent.”Meanwhile
Webb
(2020)measuresexposurethroughthe
degreeofsimilaritybetweenthedescribedapplicationsofAIpatentsandthetasksdefininganoccupation.Finally,
BriggsandKodnani
(2023)manuallyidentifyworkactivitiesexposedtoAIandwhether,withinan
7
GivenAI’spotentialtoperformhighlycomplexfunctions,understandinghowitcouldaugmentworkersorreducethedemandfortheirlaborisofgreatimportanceforpolicymakersandresearchersalike.Whilesomestudiesdifferentiatebetweensubstitutionandcomplementarity,theybuildthisdistinctiononatask-basedframework.Forinstance,
Gmyreketal.
(2023)definesoccupationsashavinghigh“automation”or“augmentation”po
-tentialbasedonthedistributionoftheAI-automationscoresoftheindividualtasksdefining
eachoccupation.5
Althoughthisapproachhasmerits,itholdsanarrowfocusincategorizingtheinteractionofhumanworkwithatechnologythatwilllikelyhavecomplexrepercussionsinotherrealms.
Ourproposedframeworkthusconceivescomplementarityasdrivenbyasetoffac-tors–social,legal,technical–thatareindependentofexposureitself.ThisdistinctionisconceptuallyillustratedinFigure
1.Workersinoccupationshighlyexposed,butwhereAI
hasthepotentialtoturnintoasupportingtechnology(upperrightquadrant)aremorelikelytoexperienceproductivitygains,conditionalonaccesstothenecessaryinfrastructureandtheappropriateskillstoengagewiththetechnology.Ontheotherhand,workersinhighlyexposedoccupationswithlowerpotentialforcomplementarity,andthusahigherriskofsub-stitution(lowerrightquadrant),mayexperiencealong-lastingfallindemandfortheirlaboralongthelinesofthenegativeshockinflictedbythepastwaveofroutine-biasedautomation,
withreducedemploymentopportunitiesandlowerearnings(AutorandDorn,
2013)
.
AtlowerlevelsofAIexposure(leftquadrants),ahighercomplementaritypotentialmaystillaffecthowAIisintegratedintoeachoccupationbut,giventhelowerscopeforinteractionwithhumanskillsandtasks,itwouldlikelybelessinfluentialforlabordemand.Inthissense,theimportanceofpotentialcomplementarityisconditionalonagivenexposurelevel.
Itisalsoworthnotingthat,whilelowercomplementarityreflectsariskoflowerlabordemandforworkersinagivenoccupation,highercomplementaritydoesnotinitselfsignifynorisksforindividualworkers.ThoseemployedinahighlycomplementaryoccupationwhodonotpossesstheskillsneededtoengagewithAIwouldlikelyfaceloweremploymentopportunitiesandwages.
occupation,suchactivitiesareofalow-enoughlevelofcomplexitythatAIcouldcompletethem.Arguably,thislastmethodologyimpliesaviewonexposurethatisclosertolaborsubstitution.
5Moreprecisely,occupationswherethemeantask-levelautomatabilityscoreishighandthestandarddeviationislowaredefinedasautomatable.Occupationswithalowmeanscoreandhighstandarddeviationaredefinedasaugmentable.
8
Withthesecaveatsinmind,weproposeasimpleadjustmentofAIexposuremeasurestoaccountforcomplementarity.Inwhatfollows,weusetheAIOEindexby
Feltenetal.
(2021)asthebaselinemeasuretoaugmentintoacomplementarity-adjustedAIOE(C-AIOE)
.However,thesameapproachcouldbeappliedtoanymeasurethatdoesnotalreadycapturecomplementarity.
Foragivenoccupationi,letθibeameasureofpotentialcomplementarityofAI.Thebaselineexposurecanbeadjustedasfollows:
C-AIOEi=AIOEi*(1?(θi?θMIN),,(1)
whereθMINistheminimumvalueofθiacrossalloccupations.WeadjustforθMINtoallowthecomplementariymeasuretohavearelativeinterpretationastheoriginalAIOEindex.Thesecondtermontheright-handsidethusrepresentsadownwardadjustmentofAIOErelativetotheoccupationwiththelowestpotentialcomplementarity(θMIN),forwhichtheAIOEandC-AIOEmeasuresconicide.HenceahighervalueoftheC-AIOEindeximpliesagreaterriskofreplacementattheoccupationlevel.
Figure1:AIexposureandComplementarityDiagram
Complementarity
人
LowExposureHighExposure
HighComplementarityHighComplementarity
Exposure
HighExposure
LowComplementarity
LowExposure
LowComplementarity
ItshouldbenotedthattheoriginalAIOEindexby
Feltenetal.
(2021)isameasure
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 單位管理制度合并選集員工管理篇十篇
- 《學(xué)習(xí)英語(yǔ)的困難》課件
- 單位管理制度分享大合集【員工管理篇】十篇
- 《證券經(jīng)紀(jì)與交易》課件
- 2024年農(nóng)業(yè)局上半年科技教育工作總結(jié)
- 九上歷史:第一次月考A卷(考試版+解析)
- DBJT 13-313-2019 城市軌道交通工程滲漏水治理技術(shù)規(guī)程
- XX中學(xué)師生生活綜合樓可研報(bào)告
- 《液壓支架技術(shù)》課件
- 《證券投資要義》課件
- 口腔頜面外科學(xué) 09顳下頜關(guān)節(jié)疾病
- 應(yīng)急物資清單明細(xì)表
- 房地產(chǎn)估計(jì)第八章成本法練習(xí)題參考
- 《社會(huì)主義核心價(jià)值觀》優(yōu)秀課件
- DB11-T1835-2021 給水排水管道工程施工技術(shù)規(guī)程高清最新版
- 《妊娠期糖尿病患者個(gè)案護(hù)理體會(huì)(論文)3500字》
- 《小學(xué)生錯(cuò)別字原因及對(duì)策研究(論文)》
- 便攜式氣體檢測(cè)報(bào)警儀管理制度
- 酒店安全的管理制度
- (大潔王)化學(xué)品安全技術(shù)說(shuō)明書(shū)
- 2022年科學(xué)道德與學(xué)術(shù)規(guī)范知識(shí)競(jìng)賽決賽題庫(kù)(含答案)
評(píng)論
0/150
提交評(píng)論