版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆上海市寶山中學(xué)高一數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1.已知點P(3,4)在角的終邊上,則的值為()A B.C. D.2.使得成立的一個充分不必要條件是()A. B.C. D.3.函數(shù)的單調(diào)減區(qū)間為()A. B.C. D.4.已知a>b,則下列式子中一定成立的是()A. B.|a|>|b|C. D.5.直線L將圓平分,且與直線平行,則直線L的方程是A.BC.D.6.角的終邊落在A.第一象限 B.第二象限C.第三象限 D.第四象限7.“”是“”的()條件A.充分不必要 B.必要不充分C.充要 D.即不充分也不必要8.已知,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件9.若,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件10.若函數(shù),則的單調(diào)遞增區(qū)間為()A. B.C. D.二、填空題(本大題共5小題,請把答案填在答題卡中相應(yīng)題中橫線上)11.將函數(shù)的圖象上所有點的橫坐標(biāo)變?yōu)樵瓉淼?倍,縱坐標(biāo)不變,再將圖象向右平移個單位后,所得圖象關(guān)于原點對稱,則的值為______12.已知,則________.13.已知向量,,若,則與的夾角為______14.設(shè),則__________15.已知,且,則______.三、解答題(本大題共6小題.解答應(yīng)寫出文字說明,證明過程或演算步驟.)16.已知函數(shù).(1)判斷函數(shù)的奇偶性,并進行證明;(2)若實數(shù)滿足,求實數(shù)的取值范圍.17.已知函數(shù)(1)判斷并證明函數(shù)的奇偶性;(2)判斷函數(shù)在區(qū)間上的單調(diào)性(不必寫出過程),并解不等式18.已知函數(shù),(1)若的值域為,求a的值(2)證明:對任意,總存在,使得成立19.如圖,直三棱柱中,分別為的中點.(1)求證:平面;(2)已知,,,求三棱錐的體積.20.已知二次函數(shù)區(qū)間[0,3]上有最大值4,最小值0(1)求函數(shù)的解析式;(2)設(shè).若在時恒成立,求k的取值范圍21.如圖,某污水處理廠要在一個矩形污水處理池的池底水平鋪設(shè)污水凈化管道(,是直角頂點)來處理污水,管道越長,污水凈化效果越好.設(shè)計要求管道的接口是的中點,分別落在線段上.已知米,米,記.(1)試將污水凈化管道總長度(即的周長)表示為的函數(shù),并求出定義域;(2)問當(dāng)取何值時,污水凈化效果最好?并求出此時管道的總長度.(提示:.)
參考答案一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1、D【解析】利用三角函數(shù)的定義即可求出答案.【詳解】因為點P(3,4)在角的終邊上,所以,,故選:D【點睛】本題考查了三角函數(shù)的定義,三角函數(shù)誘導(dǎo)公式,屬于基礎(chǔ)題.2、C【解析】由不等式、正弦函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)的性質(zhì),結(jié)合充分、必要性的定義判斷選項條件與已知條件的關(guān)系.【詳解】A:不一定有不成立,而有成立,故為必要不充分條件;B:不一定成立,而也不一定有,故為既不充分也不必要條件;C:必有成立,當(dāng)不一定有成立,故為充分不必要條件;D:必有成立,同時必有,故為充要條件.故選:C.3、A【解析】求出的范圍,函數(shù)的單調(diào)減區(qū)間為的增區(qū)間,即可得到答案.【詳解】由可得或函數(shù)的單調(diào)減區(qū)間為的增區(qū)間故選:A4、D【解析】利用特殊值法以及的單調(diào)性即可判斷選項的正誤.【詳解】對于A,若則,故錯誤;對于B,若則,故錯誤;對于C,若則,故錯誤;對于D,由在上單調(diào)增,即,故正確.故選:D5、C【解析】圓的圓心坐標(biāo),直線L將圓平分,所以直線L過圓的圓心,又因為與直線平行,所以可設(shè)直線L的方程為,將代入可得所以直線L的方程為即,所以選C考點:求直線方程6、A【解析】根據(jù)角的定義判斷即可【詳解】,故為第一象限角,故選A【點睛】判斷角的象限,將大角轉(zhuǎn)化為一個周期內(nèi)的角即可7、B【解析】根據(jù)充分條件和必要條件的概念,結(jié)合題意,即可得到結(jié)果.【詳解】因為,所以“”是“”的必要不充分條件.故選:B.8、A【解析】先判斷“”成立時,“”是否成立,反之,再看“”成立,能否推出“”,即可得答案.【詳解】“”成立時,,故“”成立,即“”是“”的充分條件;“”成立時,或,此時推不出“”成立,故“”不是“”的必要條件,故選:A.9、A【解析】利用充分條件和必要條件的定義判斷即可【詳解】,所以“”是“”的充分不必要條件故選:A10、A【解析】令,則,根據(jù)解析式,先求出函數(shù)定義域,結(jié)合二次函數(shù)以及對數(shù)函數(shù)的性質(zhì),即可得出結(jié)果.【詳解】令,則,由真數(shù)得,∵拋物線的開口向下,對稱軸,∴在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,又∵在定義域上單調(diào)遞減,由復(fù)合函數(shù)的單調(diào)性可得:的單調(diào)遞增區(qū)間為.故選:A.二、填空題(本大題共5小題,請把答案填在答題卡中相應(yīng)題中橫線上)11、【解析】將函數(shù)的圖象上所有點的橫坐標(biāo)變?yōu)樵瓉淼?倍,縱坐標(biāo)不變得到,再將圖象向右平移個單位,得到,即,其圖象關(guān)于原點對稱.∴,,又∴故答案為12、【解析】將未知角化為已知角,結(jié)合三角恒等變換公式化簡即可.【詳解】解:因為,所以.故答案為:.【點睛】三角公式求值中變角的解題思路(1)當(dāng)“已知角”有兩個時,“所求角”一般表示為兩個“已知角”的和或差的形式;(2)當(dāng)“已知角”有一個時,此時應(yīng)著眼于“所求角”與“已知角”的和或差的關(guān)系,再應(yīng)用誘導(dǎo)公式把“所求角”變成“已知角”.13、##【解析】先求向量的模,根據(jù)向量積,即可求夾角.【詳解】解:,,所以與的夾角為.故答案為:14、2【解析】由函數(shù)的解析式可知,∴考點:分段函數(shù)求函數(shù)值點評:對于分段函數(shù),求函數(shù)的關(guān)鍵是要代入到對應(yīng)的函數(shù)解析式中進行求值15、##【解析】化簡已知條件,求得,通過兩邊平方的方法求得,進而求得.【詳解】依題意,①,,,化簡得①,則,由,得,,.故答案為:三、解答題(本大題共6小題.解答應(yīng)寫出文字說明,證明過程或演算步驟.)16、(1)為奇函數(shù),證明見解析(2)【解析】(1)由奇偶性定義直接判斷即可;(2)化簡函數(shù)得到,由此可知在上單調(diào)遞增;利用奇偶性可化簡所求不等式為,利用單調(diào)性解不等式即可.【小問1詳解】為奇函數(shù),證明如下:定義域,,為定義在上的奇函數(shù).【小問2詳解】,又在上單調(diào)遞增,在上單調(diào)遞增;由(1)知:,,,,即,,解得:,即實數(shù)的取值范圍為.17、(1)函數(shù)是R上的偶函數(shù),證明見解析(2)函數(shù)在上單調(diào)遞增,【解析】(1)利用偶函數(shù)的定義判斷并證明函數(shù)為偶函數(shù);(2)根據(jù)指數(shù)函數(shù)和復(fù)合函數(shù)及函數(shù)的加減合成的單調(diào)性規(guī)律判定函數(shù)的單調(diào)性,然后結(jié)合函數(shù)是偶函數(shù),將不等式轉(zhuǎn)化為,進而兩邊同時平方,等價轉(zhuǎn)化為二次方程,求解即得.【小問1詳解】證明:依題意,函數(shù)的定義域為R.對于任意,都有,所以函數(shù)是R上的偶函數(shù)【小問2詳解】解:函數(shù)在上單調(diào)遞增因為函數(shù)R上的偶數(shù)函數(shù),所以等價于.因為函數(shù)在上單調(diào)遞增,所以,即,解得,所以不等式的解集為18、(1)2(2)證明見解析【解析】(1)由題意,可得,從而即可求解;(2)利用對勾函數(shù)單調(diào)性求出在上的值域,再分三種情況討論二次函數(shù)在閉區(qū)間上的值域,然后證明的值域是值域的子集恒成立即可得證.【小問1詳解】解:因為的值域為,所以,解得【小問2詳解】證明:由題意,根據(jù)對勾函數(shù)的單調(diào)性可得在上單調(diào)遞增,所以設(shè)在上的值域為M,當(dāng),即時,在上單調(diào)遞增,因為,,所以;當(dāng),即時,在上單調(diào)遞減,因為,,所以;當(dāng),即時,,,所以;綜上,恒成立,即在上的值域是在上值域的子集恒成立,所以對任意總存在,使得成立.19、(1)詳見解析(2)2【解析】(1)證線面平行則需在面中找一線與已知線平行即可,也可通過證明面面平行得到線面平行(2)∵,,,∴,∴.∵是直棱柱,∴棱柱的高為,∴棱柱的體積為.由體積關(guān)系可得試題解析:(1)設(shè)是的中點,分別在中使用三角形的中位線定理得.又是平面內(nèi)的相交直線,∴平面平面.又平面,∴平面.(2)∵,,,∴,∴.∵是直棱柱,∴棱柱的高為,∴棱柱的體積為.∴.20、(1);(2).【解析】(1)根據(jù)二次函數(shù)的性質(zhì)討論對稱軸,即可求解最值,可得解析式(2)求解的解析式,令,則,問題轉(zhuǎn)化為當(dāng)u∈[,8]時,恒成立,分離參數(shù)即可求解【詳解】(1)其對稱軸x=1,x∈[0,3]上,∴當(dāng)x=1時,取得最小值為﹣m+n+1=0①當(dāng)x=3時,取得最大值為3m+n+1=4②由①②解得:m=1,n=0,故得函數(shù)的解析式為:;(2)由,令,,則,問題轉(zhuǎn)化為當(dāng)u∈[,8]時,恒成立,即u2﹣4u+1﹣ku2≤0恒成立,∴k設(shè),則t∈[,8],得:1﹣4t+t2=(t﹣2)2﹣3≤k當(dāng)t=8時,(1﹣4t+t2)max=33,故得k的取值范圍是[33,+∞).21、(1),定義域為.(2)當(dāng)或時所鋪設(shè)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度雪花啤酒智能家居產(chǎn)品代理合作合同范本3篇
- 2025年度個人養(yǎng)老保險補充合同范本2篇
- 2025年度個人信用擔(dān)保服務(wù)協(xié)議3篇
- 2025年度個性化個人家政服務(wù)合同范本(定制服務(wù))4篇
- 異地書店買賣合同(2篇)
- 高端鈦鍋:烹飪藝術(shù)革新科技與健康的融合 頭豹詞條報告系列
- 2024年中級經(jīng)濟師考試題庫及答案(網(wǎng)校專用) (一)
- 2025年度智能門窗定制服務(wù)合同4篇
- 2024年中級經(jīng)濟師考試題庫【考試直接用】
- 遮光式計數(shù)器課程設(shè)計
- 啤酒廠糖化車間熱量衡算
- 英文標(biāo)點符號用法(句號分號冒號問號感嘆號)(課堂)課件
- 22部能夠療傷的身心靈療愈電影
- 領(lǐng)導(dǎo)干部有效授權(quán)的技巧與藝術(shù)課件
- DB37-T 1915-2020 安全生產(chǎn)培訓(xùn)質(zhì)量控制規(guī)范-(高清版)
- 陜西省商洛市各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名居民村民委員會明細
- 實習(xí)生請假條
- 光伏電站繼電保護運行規(guī)程
- 廚房的管理流程與制度及廚房崗位工作流程
- 鐵路危險源辨識
- 和利時DCS邏輯說明【出圖】
評論
0/150
提交評論