江蘇省無錫市宜興市宜城環(huán)科園聯(lián)盟2024年八年級數(shù)學第二學期期末學業(yè)質(zhì)量監(jiān)測試題含解析_第1頁
江蘇省無錫市宜興市宜城環(huán)科園聯(lián)盟2024年八年級數(shù)學第二學期期末學業(yè)質(zhì)量監(jiān)測試題含解析_第2頁
江蘇省無錫市宜興市宜城環(huán)科園聯(lián)盟2024年八年級數(shù)學第二學期期末學業(yè)質(zhì)量監(jiān)測試題含解析_第3頁
江蘇省無錫市宜興市宜城環(huán)科園聯(lián)盟2024年八年級數(shù)學第二學期期末學業(yè)質(zhì)量監(jiān)測試題含解析_第4頁
江蘇省無錫市宜興市宜城環(huán)科園聯(lián)盟2024年八年級數(shù)學第二學期期末學業(yè)質(zhì)量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

江蘇省無錫市宜興市宜城環(huán)科園聯(lián)盟2024年八年級數(shù)學第二學期期末學業(yè)質(zhì)量監(jiān)測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.下面計算正確的是()A. B. C. D.2.從某市5000名初一學生中,隨機抽取100名學生,測得他們的身高數(shù)據(jù),得到一個樣本,則這個樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、方差四個統(tǒng)計量中,服裝廠最感興趣的是()A.平均數(shù) B.中位數(shù) C.眾數(shù) D.方差3.如圖,將一個長為10cm,寬為8cm的矩形紙片對折兩次后,沿所得矩形兩鄰邊中點的連線(虛線)剪下,再打開,得到的菱形的面積為().A. B. C. D.4.如圖,△ABC繞點A順時針旋轉(zhuǎn)45°得到△AB′C′,若∠BAC=90°,AB=AC=,則圖中陰影部分的面積等于()A.2﹣ B.1 C. D.﹣l5.某景點的參觀人數(shù)逐年增加,據(jù)統(tǒng)計,2015年為10.8萬人次,2017年為16.8萬人次.設參觀人次的平均年增長率為x,則()A.10.8(1+x)=16.8 B.16.8(1﹣x)=10.8C.10.8(1+x)2=16.8 D.10.8[(1+x)+(1+x)2]=16.86.二次根式、、、、、中,最簡二次根式有()個.A.1個 B.2個 C.3個 D.4個7.如圖,有一直角三角形紙片ABC,∠C=90°,∠B=30°,將該直角三角形紙片沿DE折疊,使點B與點A重合,DE=1,則BC的長度為()A.2 B.+2 C.3 D.28.如圖,將周長為10的△ABC沿BC方向平移1個單位得到△DEF,則四邊形ABFD的周長為()A.8 B.10 C.12 D.149.如圖,點A在雙曲線上,點B在雙曲線上,且AB∥y軸,C、D在y軸上,若四邊形ABCD為矩形,則它的面積為()A.1.5 B.1 C.3 D.210.若關(guān)x的分式方程有增根,則m的值為()A.3 B.4 C.5 D.6二、填空題(每小題3分,共24分)11.已知點A(a,b)是一次函數(shù)的圖像與反比例函數(shù)的圖像的一個交點,則=___.12.某班七個興趣小組人數(shù)分別為4,x,5,5,4,6,7,已知這組數(shù)據(jù)的平均數(shù)是5,則x=________.13.已知直線y=x﹣3與y=2x+2的交點為(﹣5,﹣8),則方程組的解是_____.14.已知:在?ABCD中,對角線AC、BD相交于點O,過點O的直線EF分別交AD于E、BC于F,S△AOE=3,S△BOF=5,則?ABCD的面積是_____.15.如圖,在中,點D、E分別是AB、AC的中點,連接BE,若,,,則的周長是_________度.16.如圖,已知△ABC是面積為4的等邊三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC與DE相交于點F,則△AEF的面積等于___(結(jié)果保留根號).17.在從小到大排列的五個整數(shù)中,中位數(shù)是2,唯一的眾數(shù)是4,則這五個數(shù)和的最大值是__________.18.如圖,正方形中,對角線,交于點,點在上,,,垂足分別為點,,,則______.三、解答題(共66分)19.(10分)如圖,直線y=-34x+6分別與x軸、y軸交于A、B兩點:直線y=54x與AB于點C,與過點A且平行于y軸的直線交于點D.點E從點A出發(fā),以每秒1個單位的進度沿x軸向左運動.過點E作x軸的垂線,分別交直線AB、OD于P、Q兩點,以PQ為邊向右作正方形PQMN.設正方形PQMN與△ACD重疊的圖形的周長為L個單位長度,點E的運動時間為(1)直接寫出點C和點A的坐標.(2)若四邊形OBQP為平行四邊形,求t的值.(3)0<t<5時,求L與t之間的函數(shù)解析式.20.(6分)某商場計劃購進A,B兩種新型節(jié)能臺燈共100盞,這兩種臺燈的進價、售價如下表:類型價格進價(元/盞)售價(元/盞)A型3045B型5070(1)若商場預計進貨款為3500元,則這兩種臺燈各進多少盞.(2)若設商場購進A型臺燈m盞,銷售完這批臺燈所獲利潤為P,寫出P與m之間的函數(shù)關(guān)系式.(3)若商場規(guī)定B型燈的進貨數(shù)量不超過A型燈數(shù)量的4倍,那么A型和B型臺燈各進多少盞售完之后獲得利潤最多?此時利潤是多少元.21.(6分)如圖,從電線桿離地面12m處向地面拉一條長為13m的鋼纜,則地面鋼纜固定點A到電線桿底部B的距離為_____.22.(8分)如圖,點O是△ABC內(nèi)一點,連結(jié)OB、OC,并將AB、OB、OC、AC的中點D、E、F、G依次連結(jié),得到四邊形DEFG.(1)求證:四邊形DEFG是平行四邊形;(2)若M為EF的中點,OM=3,∠OBC和∠OCB互余,求DG的長度.23.(8分)如圖,已知等邊△ABC,點D在直線BC上,連接AD,作∠ADN=60°,直線DN交射線AB于點E,過點C作CF∥AB交直線DN于點F.(1)當點D在線段BC上,∠NDB為銳角時,如圖①.①判斷∠1與∠2的大小關(guān)系,并說明理由;②過點F作FM∥BC交射線AB于點M,求證:CF+BE=CD;(2)①當點D在線段BC的延長線上,∠NDB為銳角時,如圖②,請直接寫出線段CF,BE,CD之間的數(shù)量關(guān)系;②當點D在線段CB的延長線上,∠NDB為鈍角或直角時,如圖③,請直接寫出線段CF,BE,CD之間的數(shù)量關(guān)系.24.(8分)在□ABCD,過點D作DE⊥AB于點E,點F在邊CD上,DF=BE,連接AF,BF.(1)求證:四邊形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求證:AF平分∠DAB.25.(10分)如圖,直線l1的解析式為y=-x+4,直線l2的解析式為y=x-2,l1和l2的交點為點B.(1)直接寫出點B坐標;(2)平行于y軸的直線交x軸于點M,交直線l1于E,交直線l2于F.①分別求出當x=2和x=4時EF的值.②直接寫出線段EF的長y與x的函數(shù)關(guān)系式,并畫出函數(shù)圖像L.③在②的條件下,如果直線y=kx+b與L只有一個公共點,直接寫出k的取值范圍.26.(10分)如圖,在△ABC中,AC⊥BC,AC=BC,延長BC至E使BE=BA,過點B作BD⊥AE于點D,BD與AC交于點F,連接EF.(1)求證:△ACE≌△BCF.(2)求證:BF=2AD,(3)若CE=2,求AC的長.

參考答案一、選擇題(每小題3分,共30分)1、B【解析】

根據(jù)二次根式的混合運算方法,分別進行運算即可.【詳解】解:A.3+不是同類項無法進行運算,故A選項錯誤;B.=3,故B選項正確;C.,故C選項錯誤;D.,故D選項錯誤;故選B.【點睛】考查了二次根式的混合運算,熟練化簡二次根式后,在加減的過程中,有同類二次根式的要合并;相乘的時候,被開方數(shù)簡單的直接讓被開方數(shù)相乘,再化簡;較大的也可先化簡,再相乘,靈活對待.2、C【解析】

服裝廠最感興趣的是哪種尺碼的服裝售量較多,也就是需要參照指標眾數(shù).【詳解】由于眾數(shù)是數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù),故服裝廠最感興趣的指標是眾數(shù).故選(C)【點睛】本題考查統(tǒng)計量的選擇,解題的關(guān)鍵是區(qū)分平均數(shù)、中位數(shù)、眾數(shù)和方差的概念與意義進行解答;3、A【解析】

根據(jù)題意可得菱形的兩對角線長分別為4cm,5cm,根據(jù)面積公式求出菱形的面積.【詳解】由題意知,AC的一半為2cm,BD的一半為2.5cm,則AC=4cm,BD=5cm,∴菱形的面積為4×5÷2=10cm2.故選A.【點睛】本題考查了菱形的性質(zhì),解題的關(guān)鍵是掌握對角線平分且垂直的菱形的面積等于對角線積的一半.4、D【解析】∵△ABC繞點A順時針旋轉(zhuǎn)45°得到△A′B′C′,∠BAC=90°,AB=AC=,∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,AC′=AC=,∴AD⊥BC,B′C′⊥AB,∴AD=BC=1,AF=FC′=AC′=1,∴DC′=AC′-AD=-1,∴圖中陰影部分的面積等于:S△AFC′-S△DEC′=×1×1-×(-1)2=-1,故選D.【點睛】此題主要考查了旋轉(zhuǎn)的性質(zhì)以及等腰直角三角形的性質(zhì)等知識,得出AD,AF,DC′的長是解題關(guān)鍵.5、C【解析】試題分析:設參觀人次的平均年增長率為x,根據(jù)題意可得等量關(guān)系:10.8萬人次×(1+增長率)2=16.8萬人次,根據(jù)等量關(guān)系列出方程10.8(1+x)2=16.8,故選C.考點:由實際問題抽象出一元二次方程6、C【解析】

直接利用最簡二次根式的定義判斷得出結(jié)論即可.【詳解】在二次根式、、、、、中,最簡二次根式有:、、,共3個故選:C【點睛】本題考查了最簡二次根式的定義,在判斷最簡二次根式的過程中要注意:(1)在二次根式的被開方數(shù)中,只要含有分數(shù)或小數(shù),就不是最簡二次根式;(2)在二次根式的被開方數(shù)中的每一個因式(或因數(shù)),如果冪的指數(shù)大于或等于2,也不是最簡二次根式.7、C【解析】分析:先由∠B=30°,將該直角三角形紙片沿DE折疊,使點B與點A重合,DE=1,得到AD=BD=2,再根據(jù)∠C=90°,∠B=30°得∠CAD=30°,然后在Rt△ACD中,利用30°的角所對的直角邊是斜邊的一半求得CD=1,從而求得BC的長度.詳解:∵△ABC折疊,點B與點A重合,折痕為DE,∴AD=BD,∠B=∠CAD=30°,∠DEB=90°,∴AD=BD=2,∠CAD=30°,∴CD=AD=1,∴BC=BD+CD=2+1=3故選:C.點睛:本題考查了翻折變換,主要利用了翻折前后對應邊相等,此類題目,難點在于利用直角三角形中30°的角所對應的直角邊是斜邊的一半來解決問題.8、C【解析】

根據(jù)平移的基本性質(zhì),得出四邊形ABFD的周長=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.【詳解】解:根據(jù)題意,將周長為10的△ABC沿BC方向平移1個單位得到△DEF,

∴AD=1,BF=BC+CF=BC+1,DF=AC;

又∵AB+BC+AC=10,

∴四邊形ABFD的周長=AD+AB+BF+DF=1+AB+BC+1+AC=1.

故選C.【點睛】本題考查平移的基本性質(zhì):①平移不改變圖形的形狀和大??;②經(jīng)過平移,對應點所連的線段平行且相等,對應線段平行且相等,對應角相等.得到CF=AD,DF=AC是解題的關(guān)鍵.9、D【解析】

根據(jù)雙曲線的圖象上的點與原點所連的線段、坐標軸、向坐標軸作垂線所圍成的矩形的面積S的關(guān)系S=|k|即可判斷.【詳解】過A點作AE⊥y軸,垂足為E,∵點A在雙曲線y=上,∴四邊形AEOD的面積為1,∵點B在雙曲線y=上,且AB∥x軸,∴四邊形BEOC的面積為3,∴四邊形ABCD為矩形,則它的面積為3?1=2.故選D.【點睛】本題考查了反比例函數(shù)y=中k的幾何意義,即過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|,解本題的關(guān)鍵是正確理解k的幾何意義.10、D【解析】

分式方程去分母轉(zhuǎn)化為整式方程,由分式方程有增根求出x的值,代入整式方程計算即可求出m的值.【詳解】去分母得:2x-x+3=m,由分式方程有增根,得到x-3=0,即x=3,把x=3代入整式方程得:m=6,故選D.【點睛】此題考查了分式方程的增根,增根確定后可按如下步驟進行:①化分式方程為整式方程;②把增根代入整式方程即可求得相關(guān)字母的值.二、填空題(每小題3分,共24分)11、3【解析】

將點A(a,b)帶入y=-x+3的圖象與反比例函數(shù)中,即可求出a+b=3,ab=1,再根據(jù)=進行計算.【詳解】∵點A(a,b)是一次函數(shù)的圖像與反比例函數(shù)的圖像的一個交點,∴a+b=3,ab=1,∴==3.故答案是:3.【點睛】考查了一次函數(shù)和反比例函數(shù)上點的坐標特點,解題關(guān)鍵是利用圖象上點的坐標滿足函數(shù)的解析式.12、4【解析】

根據(jù)平均數(shù)的定義求出x的值即可.【詳解】根據(jù)題意得,,解得,x=4.故答案為:4.【點睛】要熟練掌握平均數(shù)的定義以及求法.13、【解析】由一次函數(shù)的交點與二元一次方程組解的關(guān)系可知方程組的解是.故答案為14、1【解析】

分析:利用平行四邊形的性質(zhì)可證明△AOF≌△COE,所以可得△COE的面積為3,進而可得△BOC的面積為8,又因為△BOC的面積=?ABCD的面積,進而可得問題答案.詳解::∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠EAC=∠BCA,∠AEF=∠CFE,又∵AO=CO,在△AOE與△COF中∴△AOE≌△COF∴△COEF的面積為3,∵S△BOF=5,∴△BOC的面積為8,∵△BOC的面積=?ABCD的面積,∴?ABCD的面積=4×8=1,故答案為1.點睛:本題考查了平行四邊形的性質(zhì)及全等三角形的判定,解答本題需要掌握兩點:①平行四邊形的對邊相等且平行,②全等三角形的對應邊、對應角分別相等.15、26【解析】

由題意可知,DE為的中位線,依據(jù)中位線定理可求出BC的長,因為,故BE=BC,而EC=AE,此題得解.【詳解】解:點D、E分別是AB、AC的中點DE為的中位線,又故答案為:26【點睛】本題考查了中位線定理、等角對等邊,熟練利用這兩點求線段長是解題的關(guān)鍵.16、3-【解析】

根據(jù)相似三角形面積比等于相似比的平方求得三角形ADE的面積,然后求出其邊長,過點F作FH⊥AE,過C作CM⊥AB,利用三角函數(shù)求出HF的值,即可得出三角形AFE的面積.【詳解】解:作CM⊥AB于M,∵等邊△ABC的面積是4,∴設BM=x,∴tan∠BCM=,∴BM=CM,∴×CM×AB=×2×CM2=4,∴CM=2,BM=2,∴AB=4,AD=AB=2,在△EAD中,作HF⊥AE交AE于H,則∠AFH=45°,∠EFH=30°,∴AH=HF,設AH=HF=x,則EH=xtan30°=x.又∵AH+EH=AE=AD=2,∴x+x=2,解得x=3-.∴S△AEF=×2×(3-)=3-.故答案為3-17、2【解析】

根據(jù)中位數(shù)和眾數(shù)的定義分析可得答案.【詳解】解:因為五個整數(shù)從小到大排列后,其中位數(shù)是2,這組數(shù)據(jù)的唯一眾數(shù)是1.

所以這5個數(shù)據(jù)分別是x,y,2,1,1,且x<y<2,

當這5個數(shù)的和最大時,整數(shù)x,y取最大值,此時x=0,y=1,

所以這組數(shù)據(jù)可能的最大的和是0+1+2+1+1=2.

故答案為:2.【點睛】主要考查了根據(jù)一組數(shù)據(jù)的中位數(shù)來確定數(shù)據(jù)的能力.將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻螅钪虚g的那個數(shù)(最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù).注意:找中位數(shù)的時候一定要先排好順序,然后再根據(jù)奇數(shù)和偶數(shù)個來確定中位數(shù),如果數(shù)據(jù)有奇數(shù)個,則正中間的數(shù)字即為所求.如果是偶數(shù)個則找中間兩位數(shù)的平均數(shù).18、1.【解析】

由S△BOE+S△COE=S△BOC即可解決問題.【詳解】連接OE.∵四邊形ABCD是正方形,AC=10,∴AC⊥BD,BO=OC=1,∵EG⊥OB,EF⊥OC,∴S△BOE+S△COE=S△BOC,∴?BO?EG+?OC?EF=?OB?OC,∴×1×EG+×1×EF=×1×1,∴EG+EF=1.故答案為1.【點睛】本題考查正方形的性質(zhì),利用面積法是解決問題的關(guān)鍵,這里記住一個結(jié)論:等腰三角形底邊上一點到兩腰的距離之和等于腰上的高,填空題可以直接應用,屬于中考常考題型三、解答題(共66分)19、(1)C3,154,A8,0;(2)2;(【解析】

(1)把y=-34x+6和y=54x聯(lián)立組成方程組,解方程組求得方程組的解,即可得點C的坐標;在直線y=-34x+6中,令y=0,求得x的值,即可得點A的坐標;(2)用t表示出點P、Q的坐標,求得PQ的長,由條件可知,BO∥QP,若使四邊形OBQP為平行四邊形,必須滿足OB=QP,由此可得10-2t=6,即可求得t值;(3)由題意可知,正方形PQMN與△ACD重疊的圖形是矩形,由此求得【詳解】(1)C的坐標為(3,154),A的坐標為((2)∵點B直線y=-34x+6與∴B(0,6),∴OB=6,∵A的坐標為(8,0),∴OA=8,由題意可得,OE=8-t,∴P(8-t,-34(8-t)+6),Q(8-t∴QP=y由條件可知,BO∥QP,若使四邊形OBQP為平行四邊形,必須滿足OB=QP,所以有10-2t=6,解得t=2;(3)當0<t<5時,L=2(10-2【點睛】本題是一次函數(shù)與結(jié)合圖形的綜合題,根據(jù)題意求得QP=10-2t是解決問題的關(guān)鍵.20、(1)應購進A型臺燈75盞,B型臺燈25盞;(2)P=﹣5m+2000;(3)商場購進A型臺燈20盞,B型臺燈80盞,銷售完這批臺燈時獲利最多,此時利潤為1900元.【解析】

(1)設商場應購進A型臺燈x盞,表示出B型臺燈為(100-x)盞,然后根據(jù)進貨款=A型臺燈的進貨款+B型臺燈的進貨款列出方程求解即可;(2)根據(jù)題意列出方程即可;

(3)設商場銷售完這批臺燈可獲利y元,根據(jù)獲利等于兩種臺燈的獲利總和列式整理,再求出x的取值范圍,然后根據(jù)一次函數(shù)的增減性求出獲利的最大值.【詳解】解:(1)設商場應購進A型臺燈x盞,則B型臺燈為(100﹣x)盞,根據(jù)題意得,30x+50(100﹣x)=3500,解得x=75,所以,100﹣75=25,答:應購進A型臺燈75盞,B型臺燈25盞;(2)設商場銷售完這批臺燈可獲利P元,則P=(45﹣30)m+(70﹣50)(100﹣m),=15m+2000﹣20m,=﹣5m+2000,即P=﹣5m+2000,(3)∵B型臺燈的進貨數(shù)量不超過A型臺燈數(shù)量的4倍,∴100﹣m≤4m,∴m≥20,∵k=﹣5<0,P隨m的增大而減小,∴m=20時,P取得最大值,為﹣5×20+2000=1900(元)答:商場購進A型臺燈20盞,B型臺燈80盞,銷售完這批臺燈時獲利最多,此時利潤為1900元.【點睛】本題考查了一次函數(shù)與一元一次方程的應用,解題的關(guān)鍵是熟練的掌握一次函數(shù)與一元一次方程的應用.21、5m.【解析】

根據(jù)勾股定理即可得到結(jié)果.【詳解】解:在Rt△ABC中BC=12,AC=13,AB2+BC2=AC2∴AB2=AC2-BC2=132-122=25∴AB=5答:地面鋼纜固定點A到電線桿底部B的距離為5米.考點:本題考查勾股定理的應用點評:解答本題的關(guān)鍵是熟練掌握勾股定理:直角三角形的兩直角邊的平方和等于斜邊的平方.22、(1)證明見解析;(2)1.【解析】

(1)根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半可得EF∥BC且EF=BC,DG∥BC且DG=BC,從而得到DE=EF,DG∥EF,再利用一組對邊平行且相等的四邊形是平行四邊形證明即可;(2)先判斷出∠BOC=90°,再利用直角三角形斜邊的中線等于斜邊的一半,求出EF即可.【詳解】證明:(1)∵D、G分別是AB、AC的中點,∴DG∥BC,DG=BC,∵E、F分別是OB、OC的中點,∴EF∥BC,EF=BC,∴DE=EF,DG∥EF,∴四邊形DEFG是平行四邊形;(2)∵∠OBC和∠OCB互余,∴∠OBC+∠OCB=90°,∴∠BOC=90°,∵M為EF的中點,OM=3,∴EF=2OM=1.由(1)有四邊形DEFG是平行四邊形,∴DG=EF=1.23、(1)①∠1=∠2,理由見解析,②證明見解析;(2)①BE=CD+CF,②CF=CD+BE.【解析】

(1)①由等邊三角形的性質(zhì)和∠ADN=60°,易得∠1+∠ADC=120°,∠2+∠ADC=120°,所以∠1=∠2;②由條件易得四邊形BCFM為平行四邊形,得到BM=CF,BC=MF,再證明△MEF≌△CDA,得到ME=CD,利用等量代換即可得證;(2)①過F作FH∥BC,易得四邊形BCFH為平行四邊形,可得HF=BC,BH=CF,然后證明△EFH≌△DAC,得到CD=EH,利用等量代換即可得BE=CD+CF;②過E作EG∥BC,易得四邊形BCGE為平行四邊形,可得EG=BC,BE=CG,然后證明△EFG≌△ADC,得到CD=FG,利用等量代換即可得CF=CD+BE.【詳解】(1)①∠1=∠2,理由如下:∵△ABC為等邊三角形∴∠ACB=60°∴∠2+∠ADC=120°又∵∠AND=60°∴∠1+∠ADC=120°∴∠1=∠2②∵MF∥BC,CF∥BM∴四邊形BCFM為平行四邊形∴BM=CF,BC=MF=AC,∵BC∥MF∴∠1=∠EFM=∠2,∠EMF=∠ABC=60°在△MEF和△CDA中,∵∠EFM=∠2,MF=AC,∠EMF=∠ACD=60°∴△MEF≌△CDA(ASA)∴ME=CD∴ME=BM+BE=CF+BE=CD即CF+BE=CD(2)①BE=CD+CF,證明如下:如圖,過F作FH∥BC,∵CF∥BH,F(xiàn)H∥BC,∴四邊形BCFH為平行四邊形∴HF=BC=AC,BH=CF∵△ABC為等邊三角形∴∠ABC=∠ACB=60°∴∠CAD+∠ADC=60°,∠DBE=120°,∠ACD=120°又∵∠AND=60°,即∠BDN+∠ADC=60°∴∠CAD=∠BDN∵BD∥HF∴∠HFE=∠BDN=∠CAD,∠EHF=∠ACD=120°在△EFH和△DAC中,∵∠EHF=∠ACD,HF=AC,∠HFE=∠CAD∴△EFH≌△DAC(ASA)∴EH=CD∴BE=BH+EH=CF+CD即BE=CD+CF;②CF=CD+BE,證明如下:如圖所示,過E作EG∥BC,∵EG∥BC,CG∥BE∴四邊形BCGE為平行四邊形,∴EG=BC=AC,BE=CG,∵∠AND=60°,∠ACD=60°∴∠ADC+∠CDE=120°,∠ADC+∠DAC=120°∴∠CDE=∠DAC又∵CD∥EG∴∠GEF=∠CDE=∠DAC,∠EGF=∠DCF∵AE∥CF∴∠DCF=∠ABC=60°∴∠EGF=∠ABC=60°在△EFG和△ADC中,∵∠GEF=∠DAC,EG=AC,∠EGF=∠ACD=60°∴△EFG≌△ADC(ASA)∴FG=CD∴CF=CG+FG=BE+CD即CF=CD+BE【點睛】本題考查了等邊三角形的性質(zhì),全等三角形的判定與性質(zhì),平行四邊形的判定與性質(zhì),解題的關(guān)鍵是根據(jù)“一線三等角”模型找到全等三角形,正確作出輔助線,利用等量代換找出線段關(guān)系.24、(1)見解析(2)見解析【解析】試題分析:(1)根據(jù)平行四邊形的性質(zhì),可得AB與CD的關(guān)系,根據(jù)平行四邊形的判定,可得BFDE是平行四邊形,再根據(jù)矩形的判定,可得答案;(2)根據(jù)平行線的性質(zhì),可得∠DFA=∠FAB,根據(jù)等腰三角形的判定與性質(zhì),可得∠DAF=∠DFA,根據(jù)角平分線的判定,可得答案.試題分析:(1)證明:∵四邊形ABCD是平行四邊形,∴AB∥CD.∵BE∥DF,BE=DF,∴四邊形BFDE是平行四邊形.∵DE⊥AB,∴∠DEB=90°,∴四邊形BFDE是矩形;(2)∵四邊形ABCD是平行四邊形,∴AB∥DC,∴∠DFA=∠FAB.在Rt△BCF中,由勾股定理,得BC===5,∴AD=BC=DF=5,∴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論