版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
安徽省五校2024年高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,滿足,則()A. B. C. D.2.函數(shù)的部分圖像大致為A. B. C. D.3.如圖所示是的圖象的一段,它的一個解析式為()A. B.C. D.4.△ABC的內(nèi)角A、B、C的對邊分別為a、b、c.已知,,,則b=A. B. C.2 D.35.若點,直線過點且與線段相交,則的斜率的取值范圍是()A.或B.或C.D.6.在平面直角坐標系xOy中,角與角均以O(shè)x為始邊,它們的終邊關(guān)于y軸對稱.若,則()A. B. C. D.7.在中,,,則的形狀是()A.鈍角三角形 B.銳角三角形 C.直角三角形 D.不能確定8.對于函數(shù),在使成立的所有常數(shù)中,我們把的最大值稱為函數(shù)的“下確界”.若函數(shù),的“下確界”為,則的取值范圍是()A. B. C. D.9.下列結(jié)論正確的是()A.若則; B.若,則C.若,則 D.若,則;10.在中,已知,,則為()A.等腰直角三角形 B.等邊三角形C.銳角非等邊三角形 D.鈍角三角形二、填空題:本大題共6小題,每小題5分,共30分。11.省農(nóng)科站要檢測某品牌種子的發(fā)芽率,計劃采用隨機數(shù)表法從該品牌粒種子中抽取粒進行檢測,現(xiàn)將這粒種子編號如下,,,,若從隨機數(shù)表第行第列的數(shù)開始向右讀,則所抽取的第粒種子的編號是.(下表是隨機數(shù)表第行至第行)84421753315724550688770474476721763350258392120676630163785916955567199810507175128673580744395238793321123429786456078252420744381551001342996602795412.中國有悠久的金石文化,印信是金石文化的代表之一.印信的形狀多為長方體、正方體或圓柱體,但南北朝時期的官員獨孤信的印信形狀是“半正多面體”(圖1).半正多面體是由兩種或兩種以上的正多邊形圍成的多面體.半正多面體體現(xiàn)了數(shù)學(xué)的對稱美.圖2是一個棱數(shù)為48的半正多面體,它的所有頂點都在同一個正方體的表面上,且此正方體的棱長為1.則該半正多面體的所有棱長和為_______.13.一組數(shù)據(jù)2,4,5,,7,9的眾數(shù)是2,則這組數(shù)據(jù)的中位數(shù)是_________.14.在《九章算術(shù)·商功》中將四個面均為直角三角形的三棱錐稱為鱉臑(biēnào),在如下圖所示的鱉臑中,,,,則的直角頂點為______.15.在中,,則______.16.設(shè)直線與圓C:x2+y2-2ay-2=0相交于A,B兩點,若,則圓C的面積為________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.設(shè)的內(nèi)角所對的邊分別為,且,.(Ⅰ)求的值;(Ⅱ)求的值.18.在中,角A,B,C所對的邊分別為a,b,c,.(1)求角B;(2)若,求周長的取值范圍.19.的內(nèi)角的對邊分別為,已知.(1)求角的大?。唬?)若為銳角三角形,且,求面積的取值范圍.20.設(shè)等比數(shù)列的前n項和為.已知,,求和.21.如圖所示,是一個矩形花壇,其中米,米.現(xiàn)將矩形花壇擴建成一個更大的矩形花壇,要求:在上,在上,對角線過點,且矩形的面積小于150平方米.(1)設(shè)長為米,矩形的面積為平方米,試用解析式將表示成的函數(shù),并確定函數(shù)的定義域;(2)當(dāng)?shù)拈L度是多少時,矩形的面積最?。坎⑶笞钚∶娣e.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
根據(jù)對數(shù)的化簡公式得到,由指數(shù)的運算公式得到=,由對數(shù)的性質(zhì)得到>0,,進而得到結(jié)果.【詳解】已知,=,>0,進而得到.故答案為A.【點睛】本題考查了指對函數(shù)的運算公式和對數(shù)函數(shù)的性質(zhì);比較大小常用的方法有:兩式做差和0比較,分式注意同分,進行因式分解為兩式相乘的形式;或者利用不等式求得最值,判斷最值和0的關(guān)系.2、C【解析】由題意知,函數(shù)為奇函數(shù),故排除B;當(dāng)時,,故排除D;當(dāng)時,,故排除A.故選C.點睛:函數(shù)圖像問題首先關(guān)注定義域,從圖像的對稱性,分析函數(shù)的奇偶性,根據(jù)函數(shù)的奇偶性排除部分選擇項,從圖像的最高點、最低點,分析函數(shù)的最值、極值,利用特值檢驗,較難的需要研究單調(diào)性、極值等,從圖像的走向趨勢,分析函數(shù)的單調(diào)性、周期性等.3、D【解析】
根據(jù)函數(shù)的圖象,得出振幅與周期,從而求出與的值.【詳解】根據(jù)函數(shù)的圖象知,振幅,周期,即,解得;所以時,,;解得,,所以函數(shù)的一個解析式為.故答案為D.【點睛】本題考查了函數(shù)的圖象與性質(zhì)的應(yīng)用問題,考查三角函數(shù)的解析式的求法,屬于基礎(chǔ)題.4、D【解析】
由余弦定理得,解得(舍去),故選D.【考點】余弦定理【名師點睛】本題屬于基礎(chǔ)題,考查內(nèi)容單一,根據(jù)余弦定理整理出關(guān)于b的一元二次方程,再通過解方程求b.運算失誤是基礎(chǔ)題失分的主要原因,請考生切記!5、C【解析】試題分析:畫出三點坐標可知,兩個邊界值為和,數(shù)形結(jié)合可知為.考點:1.相交直線;2.?dāng)?shù)形結(jié)合的方法;6、D【解析】
由題意得到,再由兩角差的余弦及同角三角函數(shù)的基本關(guān)系式化簡求解.【詳解】解:∵角與角均以O(shè)x為始邊,它們的終邊關(guān)于y軸對稱,
∴,
,
故選:D.【點睛】本題考查了兩角差的余弦公式的應(yīng)用,是基礎(chǔ)題.7、C【解析】
利用余弦定理求出,再利用余弦定理求得的值,即可判斷三角形的形狀.【詳解】在中,,解得:;∵,∵,,∴是直角三角形.故選:C.【點睛】本題考查余弦定理的應(yīng)用、三角形形狀的判定,考查邏輯推理能力和運算求解能力.8、A【解析】
由下確界定義,,的最小值是,由余弦函數(shù)性質(zhì)可得.【詳解】由題意,的最小值是,又,由,得,,,時,,所以.故選:A.【點睛】本題考查新定義,由新定義明確本題中的下確界就是函數(shù)的最小值.可通過解不等式確定參數(shù)的范圍.9、D【解析】
根據(jù)不等式的性質(zhì),結(jié)合選項,進行逐一判斷即可.【詳解】因,則當(dāng)時,;當(dāng)時,,故A錯誤;因,則或,故B錯誤;因,才有,條件不足,故C錯誤;因,則,則只能是,故D正確.故選:D.【點睛】本題考查不等式的基本性質(zhì),需要對不等式的性質(zhì)非常熟練,屬基礎(chǔ)題.10、A【解析】
已知第一個等式利用正弦定理化簡,再利用誘導(dǎo)公式及內(nèi)角和定理表示,根據(jù)兩角和與差的正弦函數(shù)公式化簡,得到A=B,第二個等式左邊前兩個因式利用積化和差公式變形,右邊利用二倍角的余弦函數(shù)公式化簡,將A+B=C,A﹣B=0代入計算求出cosC的值為0,進而確定出C為直角,即可確定出三角形形狀.【詳解】將已知等式2acosB=c,利用正弦定理化簡得:2sinAcosB=sinC,∵sinC=sin(A+B)=sinAcosB+cosAsinB,∴2sinAcosB=sinAcosB+cosAsinB,即sinAcosB﹣cosAsinB=sin(A﹣B)=0,∵A與B都為△ABC的內(nèi)角,∴A﹣B=0,即A=B,已知第二個等式變形得:sinAsinB(2﹣cosC)=(1﹣cosC)+=1﹣cosC,﹣[cos(A+B)﹣cos(A﹣B)](2﹣cosC)=1﹣cosC,∴﹣(﹣cosC﹣1)(2﹣cosC)=1﹣cosC,即(cosC+1)(2﹣cosC)=2﹣cosC,整理得:cos2C﹣2cosC=0,即cosC(cosC﹣2)=0,∴cosC=0或cosC=2(舍去),∴C=90°,則△ABC為等腰直角三角形.故選A.【點睛】此題考查了正弦定理,兩角和與差的正弦公式,二倍角的余弦函數(shù)公式,熟練掌握正弦定理是解本題的關(guān)鍵.二、填空題:本大題共6小題,每小題5分,共30分。11、1【解析】試題分析:依據(jù)隨機數(shù)表,抽取的編號依次為785,567,199,1.第四粒編號為1.考點:隨機數(shù)表.12、【解析】
取半正多面體的截面正八邊形,設(shè)半正多面體的棱長為,過分別作于,于,可知,,可求出半正多面體的棱長及所有棱長和.【詳解】取半正多面體的截面正八邊形,由正方體的棱長為1,可知,易知,設(shè)半正多面體的棱長為,過分別作于,于,則,,解得,故該半正多面體的所有棱長和為.【點睛】本題考查了空間幾何體的結(jié)構(gòu),考查了空間想象能力與計算求解能力,屬于中檔題.13、【解析】
根據(jù)眾數(shù)的定義求出的值,再根據(jù)中位數(shù)的定義進行求解即可.【詳解】因為一組數(shù)據(jù)2,4,5,,7,9的眾數(shù)是2,所以,這一組數(shù)據(jù)從小到大排列為:2,2,4,5,7,9,因此這一組數(shù)據(jù)的中位數(shù)為:.故答案為:【點睛】本題考查了眾數(shù)和中位數(shù)的定義,屬于基礎(chǔ)題.14、【解析】
根據(jù),可得平面,進而可得,再由,證明平面,即可得出,是的直角頂點.【詳解】在三棱錐中,,,且,∴平面,又平面,∴,又∵,且,∴平面,又平面,∴,∴的直角頂點為.故答案為:.【點睛】本題考查了直線與直線以及直線與平面垂直的應(yīng)用問題,屬于基礎(chǔ)題.15、【解析】
由已知求得,進一步求得,即可求出.【詳解】由,得,即,,則,,,則.【點睛】本題主要考查應(yīng)用兩角和的正切公式作三角函數(shù)的恒等變換與化簡求值.16、【解析】因為圓心坐標與半徑分別為,所以圓心到直線的距離,則,解之得,所以圓的面積,應(yīng)填答案.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(Ⅱ)【解析】(Ⅰ)因為,所以分別代入得解得(Ⅱ)由得,因為所以所以【考點定位】本題考查了正弦定理和余弦定理的應(yīng)用,考查了方程思想和運算能力.由求的過程中體現(xiàn)了整體代換的運算技巧,而求的過程則體現(xiàn)了“通性通法”的常規(guī)考查.18、(1);(2)【解析】
(1)根據(jù)輔助角公式和的范圍,得到的值;(2)利用余弦定理和基本不等式,得到的范圍,結(jié)合三角形三邊關(guān)系,從而得到周長的取值范圍.【詳解】(1)因為,所以,即,因為,所以,所以,所以;(2)在中,由余弦定理得由基本不等式可知,又,所以解得,根據(jù)三角形三邊關(guān)系得,即,故所以周長的范圍為.【點睛】本題考查輔助角公式,余弦定理解三角形,基本不等式求最值,三角形三邊關(guān)系,屬于中檔題.19、(1)(2)【解析】
(1)利用正弦定理邊角互化的思想以及兩角和的正弦公式、三角形的內(nèi)角和定理以及誘導(dǎo)公式求出的值,結(jié)合角的范圍求出角的值;(2)由三角形的面積公式得,由正弦定理結(jié)合內(nèi)角和定理得出,利用為銳角三角形得出的取值范圍,可求出的范圍,進而求出面積的取值范圍.【詳解】(1),由正弦定理邊角互化思想得,所以,,,,,;(2)由題設(shè)及(1)知的面積.由正弦定理得.由于為銳角三角形,故,由(1)知,所以,故,從而.因此面積的取值范圍是.【點睛】本題考查正弦定理解三角形以及三角形面積的取值范圍的求解,在解三角形中,等式中含有邊有角,且邊的次數(shù)相等時,可以利
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度公共服務(wù)設(shè)施施工合同交底與無障礙設(shè)計標準2篇
- 2024年度新型建筑材料采購代理合同文檔全文預(yù)覽3篇
- 2025年度景區(qū)智慧旅游項目承包實施合同3篇
- 2025年度建筑工地安全文明施工環(huán)保設(shè)施租賃協(xié)議范本3篇
- 萬兆工廠試點建設(shè)的整體方案與執(zhí)行路徑
- 痔瘡術(shù)后引流護理常規(guī)
- 《過秦論》教案設(shè)計要點2025版
- 2024年綠化養(yǎng)護勞務(wù)分包合同二零二四年度版3篇
- 2025版鋼琴租賃經(jīng)營合作協(xié)議2篇
- 2024年高密度聚乙烯塑料袋定制銷售合同范本3篇
- 交換機安裝調(diào)試記錄表實用文檔
- 理性思維作文素材800字(通用范文5篇)
- 口腔頜面外科學(xué) 09顳下頜關(guān)節(jié)疾病
- 應(yīng)急物資清單明細表
- 房地產(chǎn)估計第八章成本法練習(xí)題參考
- 《社會主義核心價值觀》優(yōu)秀課件
- 《妊娠期糖尿病患者個案護理體會(論文)3500字》
- 《小學(xué)生錯別字原因及對策研究(論文)》
- 便攜式氣體檢測報警儀管理制度
- 酒店安全的管理制度
- (大潔王)化學(xué)品安全技術(shù)說明書
評論
0/150
提交評論