安徽省泗縣一中2024屆高一下數(shù)學(xué)期末質(zhì)量檢測模擬試題含解析_第1頁
安徽省泗縣一中2024屆高一下數(shù)學(xué)期末質(zhì)量檢測模擬試題含解析_第2頁
安徽省泗縣一中2024屆高一下數(shù)學(xué)期末質(zhì)量檢測模擬試題含解析_第3頁
安徽省泗縣一中2024屆高一下數(shù)學(xué)期末質(zhì)量檢測模擬試題含解析_第4頁
安徽省泗縣一中2024屆高一下數(shù)學(xué)期末質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

安徽省泗縣一中2024屆高一下數(shù)學(xué)期末質(zhì)量檢測模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.下列函數(shù)中同時具有性質(zhì):①最小正周期是,②圖象關(guān)于點對稱,③在上為減函數(shù)的是()A. B.C. D.2.已知平行四邊形對角線與交于點,設(shè),,則()A. B. C. D.3.函數(shù)的最大值為A.4 B.5 C.6 D.74.直線與直線垂直,則的值為()A.3 B. C.2 D.5.已知樣本的平均數(shù)是10,方差是2,則的值為()A.88 B.96 C.108 D.1106.設(shè)的三個內(nèi)角成等差數(shù)列,其外接圓半徑為2,且有,則三角形的面積為()A. B. C.或 D.或7.記等差數(shù)列前項和,如果已知的值,我們可以求得()A.的值 B.的值 C.的值 D.的值8.已知等差數(shù)列中,,則()A. B.C. D.9.對于一個給定的數(shù)列,定義:若,稱數(shù)列為數(shù)列的一階差分?jǐn)?shù)列;若,稱數(shù)列為數(shù)列的二階差分?jǐn)?shù)列.若數(shù)列的二階差分?jǐn)?shù)列的所有項都等于,且,則()A.2018 B.1009 C.1000 D.50010.某小組由名男生、名女生組成,現(xiàn)從中選出名分別擔(dān)任正、副組長,則正、副組長均由男生擔(dān)任的概率為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知等差數(shù)列的公差為,且,其前項和為,若滿足,,成等比數(shù)列,且,則______,______.12.已知,則與的夾角等于___________.13.在中,若,則____________.14.在平面直角坐標(biāo)系xOy中,已知直角中,直角頂點A在直線上,頂點B,C在圓上,則點A橫坐標(biāo)的取值范圍是__________.15.若數(shù)列{an}滿足a1=2,a16.?dāng)?shù)列中,若,,則______;三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知直線l過點(1,3),且在y軸上的截距為1.

(1)求直線l的方程;

(2)若直線l與圓C:(x-a)2+(y+a)2=5相切,求實數(shù)a的值.18.已知余切函數(shù).(1)請寫出余切函數(shù)的奇偶性,最小正周期,單調(diào)區(qū)間;(不必證明)(2)求證:余切函數(shù)在區(qū)間上單調(diào)遞減.19.某企業(yè)生產(chǎn),兩種產(chǎn)品,根據(jù)市場調(diào)查與預(yù)測,產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,(注:利潤與投資單位:萬元)(1)分別將,兩種產(chǎn)品的利潤表示為投資的函數(shù)關(guān)系,并寫出它們的函數(shù)關(guān)系式;(2)該企業(yè)已籌集到10萬元資金,全部投入到,兩種產(chǎn)品的生產(chǎn),怎樣分配資金,才能使企業(yè)獲得最大利潤,其最大利潤約為多少萬元(精確到1萬元).20.(1)已知數(shù)列的前項和滿足,求數(shù)列的通項公式;(2)數(shù)列滿足,(),求數(shù)列的通項公式.21.如圖,在四棱錐中,底面,底面為矩形,為的中點,且,,.(1)求證:平面;(2)若點為線段上一點,且,求四棱錐的體積.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

根據(jù)周期公式排除A選項;根據(jù)正弦函數(shù)的單調(diào)性,排除B選項;將代入函數(shù)解析式,排除D選項;根據(jù)周期公式,將代入函數(shù)解析式,余弦函數(shù)的單調(diào)性判斷C選項正確.【詳解】對于A項,,故A錯誤;對于B項,,,函數(shù)在上單調(diào)遞增,則函數(shù)在上單調(diào)遞增,故B錯誤;對于C項,;當(dāng)時,,則其圖象關(guān)于點對稱;當(dāng),,函數(shù)在區(qū)間上單調(diào)遞減,則函數(shù)在區(qū)間單調(diào)遞減,故C正確;對于D項,當(dāng)時,,故D錯誤;故選:C【點睛】本題主要考查了求正余弦函數(shù)的周期,單調(diào)性以及對稱性的應(yīng)用,屬于中檔題.2、B【解析】

根據(jù)向量減法的三角形法則和數(shù)乘運算直接可得結(jié)果.【詳解】本題正確選項:【點睛】本題考查向量的線性運算問題,涉及到向量的減法和數(shù)乘運算的應(yīng)用,屬于基礎(chǔ)題.3、B【解析】試題分析:因為,而,所以當(dāng)時,取得最大值5,選B.【考點】正弦函數(shù)的性質(zhì)、二次函數(shù)的性質(zhì)【名師點睛】求解本題易出現(xiàn)的錯誤是認(rèn)為當(dāng)時,函數(shù)取得最大值.4、A【解析】

根據(jù)兩條直線垂直的條件列方程,解方程求得的值.【詳解】由于直線與直線垂直,所以,解得.故選:A【點睛】本小題主要考查兩條直線垂直的條件,屬于基礎(chǔ)題.5、B【解析】

根據(jù)平均數(shù)和方差公式列方程組,得出和的值,再由可求得的值.【詳解】由于樣本的平均數(shù)為,則有,得,由于樣本的方差為,有,得,即,,因此,,故選B.【點睛】本題考查利用平均數(shù)與方差公式求參數(shù),解題的關(guān)鍵在于平均數(shù)與方差公式的應(yīng)用,考查計算能力,屬于中等題.6、C【解析】

的三個內(nèi)角成等差數(shù)列,可得角A、C的關(guān)系,將已知條件中角C消去,利用三角函數(shù)和差角公式展開即可求出角A的值,再由三角形面積公式即可求得三角形面積.【詳解】的三個內(nèi)角成等差數(shù)列,則,解得,所以,所以,整理得,則或,因為,解得或.①當(dāng)時,;②當(dāng)時,,故選C.【點睛】本題考查了三角形內(nèi)角和定理、等差數(shù)列性質(zhì)、三角函數(shù)和差角公式、三角函數(shù)輔助角公式,綜合性較強(qiáng),屬于中檔題;解題中主要是通過消元構(gòu)造關(guān)于角A的三角方程,其中利用三角函數(shù)和差角公式和輔助角公式對式子進(jìn)行化解是解題的關(guān)鍵.7、C【解析】

設(shè)等差數(shù)列{an}的首項為a1,公差為d,由a5+a21=2a1+24d的值為已知,再利用等差數(shù)列的求和公式,即可得出結(jié)論.【詳解】設(shè)等差數(shù)列{an}的首項為a1,公差為d,∵已知a5+a21的值,∴2a1+24d的值為已知,∴a1+12d的值為已知,∵∴我們可以求得S25的值.故選:C.【點睛】本題考查等差數(shù)列的通項公式與求和公式的應(yīng)用,考查學(xué)生的計算能力,屬于中檔題.8、C【解析】

,.故選C.9、C【解析】

根據(jù)題目給出的定義,分析出其數(shù)列的特點為等差數(shù)列,利用等差數(shù)列求解.【詳解】依題意知是公差為的等差數(shù)列,設(shè)其首項為,則,即,利用累加法可得,由于,即解得,,故.選C.【點睛】本題考查新定義數(shù)列和等差數(shù)列,屬于難度題.10、B【解析】

根據(jù)古典概型的概率計算公式,先求出基本事件總數(shù),正、副組長均由男生擔(dān)任包含的基本事件總數(shù),由此能求出正、副組長均由男生擔(dān)任的概率.【詳解】某小組由2名男生、2名女生組成,現(xiàn)從中選出2名分別擔(dān)任正、副組長,基本事件總數(shù),正、副組長均由男生擔(dān)任包含的基本事件總數(shù),正、副組長均由男生擔(dān)任的概率為.故選.【點睛】本題主要考查古典概型的概率求法。二、填空題:本大題共6小題,每小題5分,共30分。11、2【解析】

由,可求出,再由,,成等比數(shù)列,可建立關(guān)系式,求出,進(jìn)而求出即可.【詳解】由,可知,即,又,,成等比數(shù)列,所以,則,即,解得或,因為,所以,,所以.故答案為:2;.【點睛】本題考查等比數(shù)列的性質(zhì),考查等差數(shù)列前項和的求法,考查學(xué)生的計算求解能力,屬于基礎(chǔ)題.12、【解析】

利用再結(jié)合已知條件即可求解【詳解】由,即,故答案為:【點睛】本題考查向量的夾角計算公式,在考題中應(yīng)用廣泛,屬于中檔題13、2【解析】

根據(jù)正弦定理角化邊可得答案.【詳解】由正弦定理可得.故答案為:2【點睛】本題考查了正弦定理角化邊,屬于基礎(chǔ)題.14、【解析】

由題意畫出圖形,寫出以原點為圓心,以為半徑的圓的方程,與直線方程聯(lián)立求得值,則答案可求.【詳解】如圖所示,當(dāng)點往直線兩邊運動時,不斷變小,當(dāng)點為直線上的定點時,直線與圓相切時,最大,∴當(dāng)為正方形,則,則以為圓心,以為半徑的圓的方程為.聯(lián)立,得.解得或.點橫坐標(biāo)的取值范圍是.故答案為:.【點睛】本題考查直線與圓位置關(guān)系的應(yīng)用,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意坐標(biāo)法的應(yīng)用.15、2×【解析】

判斷數(shù)列是等比數(shù)列,然后求出通項公式.【詳解】數(shù)列{an}中,a可得數(shù)列是等比數(shù)列,等比為3,an故答案為:2×3【點睛】本題考查等比數(shù)列的判斷以及通項公式的求法,考查計算能力.16、【解析】

先分組求和得,再根據(jù)極限定義得結(jié)果.【詳解】因為,,……,,所以則.【點睛】本題考查分組求和法、等比數(shù)列求和、以及數(shù)列極限,考查基本求解能力.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)y=2x+1;(2)a=-2或【解析】

(1)求得直線的斜率,再由點斜式方程可得所求直線方程;(2)運用直線和圓相切的條件,即圓心到直線的距離等于半徑,解方程可得所求值.【詳解】(1)直線l過點(1,3),且在y軸上的截距為1,可得直線l的斜率為=2,則直線l的方程為y3=2(x1),即y=2x+1;

(2)若直線l與圓C:(xa)2+(y+a)2=5相切,

可得圓心(a,a)到直線l的距離為,即有

=,解得a=2或.【點睛】本題考查直線方程和圓方程的運用,考查直線和圓相切的條件,考查方程思想和運算能力,屬于基礎(chǔ)題.18、(1)奇函數(shù);周期為,單調(diào)遞減速區(qū)間:(2)證明見解析【解析】

(1)直接利用函數(shù)的性質(zhì)寫出結(jié)果.(2)利用單調(diào)性的定義和三角函數(shù)關(guān)系式的變換求出結(jié)果.【詳解】(1)奇函數(shù);周期為,單調(diào)遞減區(qū)間:(2)任取,,,有因為,所以,于是,,從而,.因此余切函數(shù)在區(qū)間上單調(diào)遞減.【點睛】本題考查的知識要點:三角函數(shù)關(guān)系式的恒等變變換,函數(shù)關(guān)系式的應(yīng)用,主要考查學(xué)生的運算能力和轉(zhuǎn)化能力,屬于基礎(chǔ)題型.19、(1)為,為;(2)產(chǎn)品投入3.75萬元,產(chǎn)品投入6.25萬元,最大利潤為4萬元【解析】

(1)根據(jù)題意給出的函數(shù)模型,設(shè);代入圖中數(shù)據(jù)求得既得,注意自變量;(2)設(shè)產(chǎn)品投入萬元,則產(chǎn)品投入萬元,設(shè)企業(yè)利潤為萬元.,列出利潤函數(shù)為,用換元法,設(shè),變化為二次函數(shù)可求得利潤的最大值.【詳解】解:(1)設(shè)投資為萬元,產(chǎn)品的利潤為萬元,產(chǎn)品的利潤為萬元由題設(shè)知;由圖1知,由圖2知,則,.(2)設(shè)產(chǎn)品投入萬元,則產(chǎn)品投入萬元,設(shè)企業(yè)利潤為萬元.,,令,則則當(dāng)時,,此時所以當(dāng)產(chǎn)品投入3.75萬元,產(chǎn)品投入6.25萬元,企業(yè)獲得最大利潤為4萬元.【點睛】本題考查函數(shù)的應(yīng)用,在已知函數(shù)模型時直接設(shè)出函數(shù)表達(dá)式,代入已知條件可得函數(shù)解析式.20、(1);(2).【解析】

(1)利用求出數(shù)列的通項公式;(2)利用累加法求數(shù)列的通項公式;【詳解】解:(1)①當(dāng)時,即當(dāng)時,②①減②得經(jīng)檢驗時,成立故(2)()……將上述式相加可得【點睛】本題考查作差法求數(shù)列的通項公式以及累加法求數(shù)列的通項公式,屬于基礎(chǔ)題.21、(1)見解析(2)6【解析】

(1)連接交于點,得出點為的中點,利用中位線的性質(zhì)得出,再利用直線與平面平行的判定定理可得出平面;(2)過作交于,由平面,得出平面,可而出,結(jié)合,可證明出平面,可得出,并計算出,利用平行線的性質(zhì)求出的長,再利用錐體的體積公式可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論