版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
江西省白鷺洲中學(xué)2025屆數(shù)學(xué)高一下期末監(jiān)測(cè)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知點(diǎn)是直線上一動(dòng)點(diǎn),與是圓的兩條切線,為切點(diǎn),則四邊形的最小面積為()A. B. C. D.2.下圖所示的莖葉圖記錄了甲、乙兩組各5名工人某日的產(chǎn)量數(shù)據(jù)(單位:件)若這兩組數(shù)據(jù)的中位數(shù)相等,且平均值也相等,則和的值分別為A.5,5 B.3,5 C.3,7 D.5,73.已知函數(shù)()的最小正周期為,則該函數(shù)的圖象()A.關(guān)于直線對(duì)稱 B.關(guān)于直線對(duì)稱C.關(guān)于點(diǎn)對(duì)稱 D.關(guān)于點(diǎn)對(duì)稱4.不等式的解集為()A. B.C. D.5.把函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍(縱坐標(biāo)不變),再把所得曲線向右平移個(gè)單位長(zhǎng)度,最后所得曲線的一條對(duì)稱軸是()A. B. C. D.6.已知函數(shù),且不等式的解集為,則函數(shù)的圖象為()A. B.C. D.7.一塊各面均涂有油漆的正方體被鋸成27個(gè)大小相同的小正方體,若將這些小正方體均勻地?cái)嚮煸谝黄穑瑥闹腥我馊〕鲆粋€(gè),則取出的小正方體兩面涂有油漆的概率是()A.127 B.29 C.48.的值等于()A. B. C. D.9.設(shè)是內(nèi)任意一點(diǎn),表示的面積,記,定義,已知,是的重心,則()A.點(diǎn)在內(nèi) B.點(diǎn)在內(nèi)C.點(diǎn)在內(nèi) D.點(diǎn)與點(diǎn)重合10.圓與圓的位置關(guān)系是()A.內(nèi)切 B.外切 C.相交 D.相離二、填空題:本大題共6小題,每小題5分,共30分。11.過(guò)直線上一點(diǎn)作圓的兩條切線,切點(diǎn)分別為,若的最大值為,則實(shí)數(shù)__________.12.已知數(shù)列滿足:,,則_____.13.將角度化為弧度:________.14.方程在區(qū)間上的解為___________.15.某工廠甲、乙、丙三個(gè)車間生產(chǎn)了同種產(chǎn)品,數(shù)量分別為90件,60件,30件,為了解它們的產(chǎn)品質(zhì)量是否存在顯著差異,采用層抽樣方法抽取了一個(gè)容量為的樣本進(jìn)行調(diào)查,其中從乙車間的產(chǎn)品中抽取了2件,應(yīng)從甲車間的產(chǎn)品中抽取______件.16.在數(shù)列中,,是其前項(xiàng)和,當(dāng)時(shí),恒有、、成等比數(shù)列,則________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.在直三棱柱中,,,,分別是,的中點(diǎn).(1)求證:平面;(2)求直線與平面所成角的正弦值.18.在平面直角坐標(biāo)系中,已知圓和圓.(1)若直線過(guò)點(diǎn),且被圓截得的弦長(zhǎng)為,求直線的方程;(2)設(shè)P為平面上的點(diǎn),滿足:存在過(guò)點(diǎn)P的無(wú)窮多對(duì)互相垂直的直線和,它們分別與圓和圓相交,且直線被圓截得的弦長(zhǎng)與直線被圓截得的弦長(zhǎng)相等,試求所有滿足條件的點(diǎn)P的坐標(biāo).19.設(shè)有關(guān)于的一元二次方程.(Ⅰ)若是從四個(gè)數(shù)中任取的一個(gè)數(shù),是從三個(gè)數(shù)中任取的一個(gè)數(shù),求上述方程有實(shí)根的概率.(Ⅱ)若是從區(qū)間任取的一個(gè)數(shù),是從區(qū)間任取的一個(gè)數(shù),求上述方程有實(shí)根的概率.20.的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知(1)求A;(2)若A為銳角,,的面積為,求的周長(zhǎng).21.已知是復(fù)數(shù),與均為實(shí)數(shù),且復(fù)數(shù)在復(fù)平面上對(duì)應(yīng)的點(diǎn)在第一象限,求實(shí)數(shù)的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】
利用當(dāng)與直線垂直時(shí),取最小值,并利用點(diǎn)到直線的距離公式計(jì)算出的最小值,然后利用勾股定理計(jì)算出、的最小值,最后利用三角形的面積公式可求出四邊形面積的最小值.【詳解】如下圖所示:由切線的性質(zhì)可知,,,且,,當(dāng)取最小值時(shí),、也取得最小值,顯然當(dāng)與直線垂直時(shí),取最小值,且該最小值為點(diǎn)到直線的距離,即,此時(shí),,四邊形面積的最小值為,故選A.【點(diǎn)睛】本題考查直線與圓的位置關(guān)系,考查切線長(zhǎng)的計(jì)算以及四邊形的面積,本題在求解切線長(zhǎng)的最小值時(shí),要抓住以下兩點(diǎn):(1)計(jì)算切線長(zhǎng)應(yīng)利用勾股定理,即以點(diǎn)到圓心的距離為斜邊,切線長(zhǎng)與半徑為兩直角邊;(2)切線長(zhǎng)取最小值時(shí),點(diǎn)到圓心的距離也取到最小值.2、B【解析】
利用莖葉圖、中位數(shù)、平均數(shù)的性質(zhì)直接求解.【詳解】由莖葉圖得:∵甲、乙兩組各5名工人某日的產(chǎn)量數(shù)據(jù)(單位:件)若這兩組數(shù)據(jù)的中位數(shù)相等,∴65=60+y,解得y=5,∵平均值也相等,∴,解得x=1.故選B.【點(diǎn)睛】本題考查實(shí)數(shù)值的求法,考查莖葉圖、中位數(shù)、平均數(shù)的性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.3、D【解析】∵函數(shù)()的最小正周期為,∴,,令,,,,顯然A,B錯(cuò)誤;令,可得:,,顯然時(shí),D正確故選D4、B【解析】
把不等式左邊的二次三項(xiàng)式因式分解后求出二次不等式對(duì)應(yīng)方程的兩根,結(jié)合二次函數(shù)的圖象可得二次不等式的解集.【詳解】由,得(x?1)(x+3)>0,解得x<?3或x>1.所以原不等式的解為,故選:B.【點(diǎn)睛】本題考查一元二次不等式的解法,求出二次方程的根結(jié)合二次函數(shù)的圖象可得解集,屬于基礎(chǔ)題.5、A【解析】
先求出圖像變換最后得到的解析式,再求函數(shù)圖像的對(duì)稱軸方程.【詳解】由題得圖像變換最后得到的解析式為,令,令k=-1,所以.故選A【點(diǎn)睛】本題主要考查三角函數(shù)圖像變換和三角函數(shù)圖像對(duì)稱軸的求法,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平,屬于基礎(chǔ)題.6、B【解析】本題考查二次函數(shù)圖像,二次方程的根,二次不等式的解集三者之間的關(guān)系.不等式的解集為,所以方程的兩根是則解得所以則故選B7、C【解析】
先求出基本事件總數(shù)n=27,在得到的27個(gè)小正方體中,若其兩面涂有油漆,則這個(gè)小正方體必在原正方體的某一條棱上,且原正方體的一條棱上只有一個(gè)兩面涂有油漆的小正方體,則兩面涂有油漆的小正方體共有12個(gè),由此能求出在27個(gè)小正方體中,任取一個(gè)其兩面涂有油漆的概率.【詳解】∵一塊各面均涂有油漆的正方體被鋸成27個(gè)大小相同的小正方體,∴基本事件總數(shù)n=27,在得到的27個(gè)小正方體中,若其兩面涂有油漆,則這個(gè)小正方體必在原正方體的某一條棱上,且原正方體的一條棱上只有一個(gè)兩面涂有油漆的小正方體,則兩面涂有油漆的小正方體共有12個(gè),則在27個(gè)小正方體中,任取一個(gè)其兩面涂有油漆的概率P=1227=故選:C【點(diǎn)睛】本題考查概率的求法,考查古典概型、正方體性質(zhì)等基礎(chǔ)知識(shí),考查推理論證能力、空間想象能力,考查函數(shù)與方程思想,是基礎(chǔ)題.8、A【解析】=,選A.9、A【解析】解:由已知得,f(P)=(λ1,λ2,λ3)中的三個(gè)坐標(biāo)分別為P分△ABC所得三個(gè)三角形的高與△ABC的高的比值,∵f(Q)=(1/2,1/3,1/6)∴P離線段AB的距離最近,故點(diǎn)Q在△GAB內(nèi)由分析知,應(yīng)選A.10、B【解析】
由兩圓的圓心距及半徑的關(guān)系求解即可得解.【詳解】解:由圓,圓,即,所以圓的圓心坐標(biāo)為,圓的圓心坐標(biāo)為,兩圓半徑,則圓心距,即兩圓外切,故選:B.【點(diǎn)睛】本題考查了兩圓的位置關(guān)系的判斷,屬基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、1或;【解析】
要使最大,則最?。驹斀狻繄A的標(biāo)準(zhǔn)方程為,圓心為,半徑為.∵若的最大值為,∴,解得或.故答案為1或.【點(diǎn)睛】本題考查直線與圓的位置關(guān)系,解題思路是平面上對(duì)圓的張角問題,顯然在點(diǎn)固定時(shí),圓外的點(diǎn)作圓的兩條切線,這兩條切線間的夾角是最大角,而當(dāng)點(diǎn)離圓越近時(shí),這個(gè)又越大.12、【解析】
從開始,直接代入公式計(jì)算,可得的值.【詳解】解:由題意得:,,,,故答案為:.【點(diǎn)睛】本題主要考查數(shù)列的遞推公式及數(shù)列的性質(zhì),相對(duì)簡(jiǎn)單.13、【解析】
根據(jù)角度和弧度的互化公式求解即可.【詳解】.故答案為:.【點(diǎn)睛】本題考查角度和弧度的互化公式,屬于基礎(chǔ)題.14、【解析】試題分析:化簡(jiǎn)得:,所以,解得或(舍去),又,所以.【考點(diǎn)】二倍角公式及三角函數(shù)求值【名師點(diǎn)睛】已知三角函數(shù)值求角,基本思路是通過(guò)化簡(jiǎn),得到角的某種三角函數(shù)值,結(jié)合角的范圍求解.本題難度不大,能較好地考查考生的邏輯推理能力、基本計(jì)算能力等.15、.【解析】
根據(jù)分層抽樣中樣本容量關(guān)系,即可求得從甲車間的產(chǎn)品中抽取數(shù)量.【詳解】根據(jù)分層抽樣為等概率抽樣,所以乙車間每個(gè)樣本被抽中的概率等于甲車間每個(gè)樣本被抽中的概率設(shè)從甲車間抽取樣本為件所以,解得所以從甲車間抽取樣本件故答案為:【點(diǎn)睛】本題考查了分層抽樣的特征及樣本數(shù)量的求法,屬于基礎(chǔ)題.16、.【解析】
由題意得出,當(dāng)時(shí),由,代入,化簡(jiǎn)得出,利用倒數(shù)法求出的通項(xiàng)公式,從而得出的表達(dá)式,于是可求出的值.【詳解】當(dāng)時(shí),由題意可得,即,化簡(jiǎn)得,得,兩邊取倒數(shù)得,,所以,數(shù)列是以為首項(xiàng),以為公差的等差數(shù)列,,,則,因此,,故答案為:.【點(diǎn)睛】本題考查數(shù)列極限的計(jì)算,同時(shí)也考查了數(shù)列通項(xiàng)的求解,在含的數(shù)列遞推式中,若作差法不能求通項(xiàng)時(shí),可利用轉(zhuǎn)化為的遞推公式求通項(xiàng),考查分析問題和解決問題的能力,綜合性較強(qiáng),屬于中等題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見解析。(2)【解析】
(1)首先根據(jù)已知得到,再根據(jù)線面平行的判定即可得到平面.(2)首先根據(jù)線面垂直的判定證明平面,即可找到為與平面所成角,在計(jì)算其正弦值即可.【詳解】(1)因?yàn)榉謩e是,的中點(diǎn),所以四邊形為平行四邊形,即.平面,所以平面.(2)因?yàn)?,為中點(diǎn),所以.平面.所以為與平面所成角.在中,,,所以,.在中,,,所以.【點(diǎn)睛】本題第一問考查線面平行的判定,本題第二問考查線面成角,屬于中檔題.18、(1)或,(2)點(diǎn)P坐標(biāo)為或.【解析】(1)設(shè)直線l的方程為y=k(x-4),即kx-y-4k=0.由垂徑定理,得圓心C1到直線l的距離d==1,結(jié)合點(diǎn)到直線距離公式,得=1,化簡(jiǎn)得24k2+7k=0,解得k=0或k=-.所求直線l的方程為y=0或y=-(x-4),即y=0或7x+24y-28=0.(2)設(shè)點(diǎn)P坐標(biāo)為(m,n),直線l1、l2的方程分別為y-n=k(x-m),y-n=-(x-m),即kx-y+n-km=0,-x-y+n+m=0.因?yàn)橹本€l1被圓C1截得的弦長(zhǎng)與直線l2被圓C2截得的弦長(zhǎng)相等,兩圓半徑相等.由垂徑定理,得圓心C1到直線l1與圓心C2到直線l2的距離相等.故有,化簡(jiǎn)得(2-m-n)k=m-n-3或(m-n+8)k=m+n-5.因?yàn)殛P(guān)于k的方程有無(wú)窮多解,所以有解得點(diǎn)P坐標(biāo)為或.19、(Ⅰ)(Ⅱ)【解析】
(1)本題是一個(gè)古典概型,可知基本事件共12個(gè),方程當(dāng)時(shí)有實(shí)根的充要條件為,滿足條件的事件中包含9個(gè)基本事件,由古典概型公式得到事件發(fā)生的概率.(2)本題是一個(gè)幾何概型,試驗(yàn)的全部約束所構(gòu)成的區(qū)域?yàn)?,.?gòu)成事件的區(qū)域?yàn)椋?,.根?jù)幾何概型公式得到結(jié)果.【詳解】解:設(shè)事件為“方程有實(shí)數(shù)根”.當(dāng)時(shí),方程有實(shí)數(shù)根的充要條件為.(Ⅰ)基本事件共12個(gè):.其中第一個(gè)數(shù)表示的取值,第二個(gè)數(shù)表示的取值.事件中包含9個(gè)基本事件,事件發(fā)生的概率為.(Ⅱ)實(shí)驗(yàn)的全部結(jié)果所構(gòu)成的區(qū)域?yàn)椋畼?gòu)成事件的區(qū)域?yàn)?,所求的概率為【點(diǎn)睛】本題考查幾何概型和古典概型,放在一起的目的是把兩種概型加以比較,屬于基礎(chǔ)題.20、(1)或;(2).【解析】
(1)由正弦定理將
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《疫苗及接種醫(yī)學(xué)》課件
- 《眼的解剖》課件
- 地理-山東省淄博市2024-2025學(xué)年第一學(xué)期高三期末摸底質(zhì)量檢測(cè)試題和答案
- 小學(xué)五年級(jí)數(shù)學(xué)上期小數(shù)點(diǎn)乘除法計(jì)算習(xí)題
- 小學(xué)數(shù)學(xué)新人教版一年級(jí)下冊(cè)20以內(nèi)口算練習(xí)題大全
- 【金榜學(xué)案】七年級(jí)歷史上冊(cè)第一單元第2課原始的農(nóng)耕生活達(dá)標(biāo)檢測(cè)岳麓版
- 勇敢地化蝶高考語(yǔ)文閱讀理解
- 《智慧醫(yī)療解決方案》課件
- 《爐內(nèi)冒正壓的機(jī)理》課件
- 高錳鋼鑄件裂紋缺陷形成原因
- 六年級(jí)語(yǔ)文上冊(cè)期末試卷及完整答案
- 人教版(2024)數(shù)學(xué)七年級(jí)上冊(cè)期末測(cè)試卷(含答案)
- 醫(yī)院護(hù)理10s管理
- 2024年山西晉中市靈石縣事業(yè)單位招聘工作人員公8人歷年管理單位遴選500模擬題附帶答案詳解
- 上海市市轄區(qū)(2024年-2025年小學(xué)六年級(jí)語(yǔ)文)部編版質(zhì)量測(cè)試(上學(xué)期)試卷及答案
- 科學(xué)計(jì)算語(yǔ)言Julia及MWORKS實(shí)踐 課件 25-Syslab工具箱簡(jiǎn)介
- 北京市東城區(qū)2023-2024學(xué)年八年級(jí)上學(xué)期期末生物試題
- ISO28000:2022供應(yīng)鏈安全管理體系
- 人教版六年級(jí)數(shù)學(xué)下冊(cè)全冊(cè)分層作業(yè)設(shè)計(jì)含答案
- 超聲波治療儀的臨床應(yīng)用(軟組織損傷篇)
- 汽油調(diào)和技術(shù)
評(píng)論
0/150
提交評(píng)論