![四川省成都市東辰國際學(xué)校2024年數(shù)學(xué)高一下期末復(fù)習(xí)檢測試題含解析_第1頁](http://file4.renrendoc.com/view2/M01/1B/21/wKhkFmZnsSyAbGt6AAKXI99rKP8493.jpg)
![四川省成都市東辰國際學(xué)校2024年數(shù)學(xué)高一下期末復(fù)習(xí)檢測試題含解析_第2頁](http://file4.renrendoc.com/view2/M01/1B/21/wKhkFmZnsSyAbGt6AAKXI99rKP84932.jpg)
![四川省成都市東辰國際學(xué)校2024年數(shù)學(xué)高一下期末復(fù)習(xí)檢測試題含解析_第3頁](http://file4.renrendoc.com/view2/M01/1B/21/wKhkFmZnsSyAbGt6AAKXI99rKP84933.jpg)
![四川省成都市東辰國際學(xué)校2024年數(shù)學(xué)高一下期末復(fù)習(xí)檢測試題含解析_第4頁](http://file4.renrendoc.com/view2/M01/1B/21/wKhkFmZnsSyAbGt6AAKXI99rKP84934.jpg)
![四川省成都市東辰國際學(xué)校2024年數(shù)學(xué)高一下期末復(fù)習(xí)檢測試題含解析_第5頁](http://file4.renrendoc.com/view2/M01/1B/21/wKhkFmZnsSyAbGt6AAKXI99rKP84935.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
四川省成都市東辰國際學(xué)校2024年數(shù)學(xué)高一下期末復(fù)習(xí)檢測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè),表示兩條直線,,表示兩個平面,則下列命題正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則2.在天氣預(yù)報中,有“降水概率預(yù)報”,例如預(yù)報“明天降水的概率為”,這是指()A.明天該地區(qū)有的地方降水,有的地方不降水B.明天該地區(qū)有的時間降水,其他時間不降水C.明天該地區(qū)降水的可能性為D.氣象臺的專家中有的人認(rèn)為會降水,另外有的專家認(rèn)為不降水3.已知m,n是兩條不同的直線,是三個不同的平面,則下列命題正確的是()A.若,,則 B.若,則C.若,,,則 D.若,,則4.演講比賽共有9位評委分別給出某選手的原始評分,評定該選手的成績時,從9個原始評分中去掉1個最高分、1個最低分,得到7個有效評分.7個有效評分與9個原始評分相比,不變的數(shù)字特征是A.中位數(shù) B.平均數(shù)C.方差 D.極差5.已知圓C的半徑為2,在圓內(nèi)隨機取一點P,并以P為中點作弦AB,則弦長的概率為A. B. C. D.6.將函數(shù)的圖像左移個單位,則所得到的圖象的解析式為A. B.C. D.7.設(shè)l是直線,,是兩個不同的平面,下列命題正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則8.給出下列四個命題:①垂直于同一條直線的兩條直線互相平行;②平行于同一條直線的兩條直線平行;③若直線滿足,則;④若直線,是異面直線,則與,都相交的兩條直線是異面直線.其中假命題的個數(shù)是()A.1 B.2 C.3 D.49.已知向量,,則向量的夾角的余弦值為()A. B. C. D.10.為奇函數(shù),當(dāng)時,則時,A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.給出以下四個結(jié)論:①平行于同一直線的兩條直線互相平行;②垂直于同一平面的兩個平面互相平行;③若,是兩個平面;,是異面直線;且,,,,則;④若三棱錐中,,,則點在平面內(nèi)的射影是的垂心;其中錯誤結(jié)論的序號為__________.(要求填上所有錯誤結(jié)論的序號)12.設(shè)滿足約束條件,則的最小值為__________.13.已知直線l過定點,且與兩坐標(biāo)軸圍成的三角形的面積為4,則直線l的方程為______.14.?dāng)?shù)列中,其前n項和,則的通項公式為______________..15.在直角坐標(biāo)系中,已知任意角以坐標(biāo)原點為頂點,以軸的非負(fù)半軸為始邊,若其終邊經(jīng)過點,且,定義:,稱“”為“的正余弦函數(shù)”,若,則_________.16.若是等比數(shù)列,,,且公比為整數(shù),則______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,函數(shù),其中的圖象與y軸交于點.(1)求的值;(2)求函數(shù)的單調(diào)遞增區(qū)間;(3)求使的x的集合.18.已知直線l經(jīng)過點,并且其傾斜角等于直線的傾斜角的2倍.求直線l的方程.19.已知等比數(shù)列的各項為正數(shù),為其前項的和,,.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)設(shè)數(shù)列是首項為,公差為的等差數(shù)列,求數(shù)列的通項公式及其前項的和.20.已知三棱柱中,平面ABC,,,M為AC中點.(1)證明:直線平面;(2)求異面直線與所成角的大小.21.已知函數(shù)().(1)若在區(qū)間上的值域為,求實數(shù)的值;(2)在(1)的條件下,記的角所對的邊長分別為,若,的面積為,求邊長的最小值;(3)當(dāng),時,在答題紙上填寫下表,用五點法作出的圖像,并寫出它的單調(diào)遞增區(qū)間.0
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
對選項進(jìn)行一一判斷,選項D為面面垂直判定定理.【詳解】對A,與可能異面,故A錯;對B,可能在平面內(nèi);對C,與平面可能平行,故C錯;對D,面面垂直判定定理,故選D.【點睛】本題考查空間中線、面位置關(guān)系,判斷一個命題為假命題,只要能舉出反例即可.2、C【解析】
預(yù)報“明天降水的概率為”,屬于隨機事件,可能下雨,也可能不下雨,即可得到答案.【詳解】由題意,天氣預(yù)報中,有“降水概率預(yù)報”,例如預(yù)報“明天降水的概率為”,這是指明天下雨的可能性是,故選C.【點睛】本題主要考查了隨機事件的概念及其概率,其中正確理解隨機事件的概率的概念是解答此類問題的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.3、C【解析】
利用線面垂直、線面平行、面面垂直的性質(zhì)定理分別對選項分析選擇.【詳解】對于A,若,,則或者;故A錯誤;對于B,若,則可能在內(nèi)或者平行于;故B錯誤;對于C,若,,,過分作平面于,作平面,則根據(jù)線面平行的性質(zhì)定理得,,∴,根據(jù)線面平行的判定定理,可得,又,,根據(jù)線面平行的性質(zhì)定理可得,又,∴;故C正確;對于D.若,,則與可能垂直,如墻角;故D錯誤;故選:C.【點睛】本題考查了面面垂直、線面平行、線面垂直的性質(zhì)定理及應(yīng)用,涉及空間線線平行的傳遞性,考查了空間想象能力,熟練運用定理是關(guān)鍵.4、A【解析】
可不用動筆,直接得到答案,亦可采用特殊數(shù)據(jù),特值法篩選答案.【詳解】設(shè)9位評委評分按從小到大排列為.則①原始中位數(shù)為,去掉最低分,最高分,后剩余,中位數(shù)仍為,A正確.②原始平均數(shù),后來平均數(shù)平均數(shù)受極端值影響較大,與不一定相同,B不正確③由②易知,C不正確.④原極差,后來極差可能相等可能變小,D不正確.【點睛】本題旨在考查學(xué)生對中位數(shù)、平均數(shù)、方差、極差本質(zhì)的理解.5、B【解析】
先求出臨界狀態(tài)時點P的位置,若,則點P與點C的距離必須大于或等于臨界狀態(tài)時與點C的距離,再根據(jù)幾何概型的概率計算公式求解.【詳解】如圖所示:當(dāng)時,此時,若,則點P必須位于以點C為圓心,半徑為1和半徑為2的圓環(huán)內(nèi),所以弦長的概率為:.故選B.【點睛】本題主要考查幾何概型與圓的垂徑定理,此類題型首先要求出臨界狀態(tài)時的情況,再判斷滿足條件的區(qū)域.6、C【解析】
由三角函數(shù)的圖象變換,將函數(shù)的圖像左移個單位,得到,即可得到函數(shù)的解析式.【詳解】由題意,將函數(shù)的圖像左移個單位,可得的圖象,所以得到的函數(shù)的解析式為,故選C.【點睛】本題主要考查了三角函數(shù)的圖象變換,其中熟記三角函數(shù)的圖象變換的規(guī)則是解答本題的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.7、D【解析】
利用空間線線、線面、面面的位置關(guān)系對選項進(jìn)行逐一判斷,即可得到答案.【詳解】A.若,,則與可能平行,也可能相交,所以不正確.B.若,,則與可能的位置關(guān)系有相交、平行或,所以不正確.C.若,,則可能,所以不正確.D.若,,由線面平行的性質(zhì)過的平面與相交于,則,又.
所以,所以有,所以正確.故選:D【點睛】本題考查面面平行、垂直的判斷,線面平行和垂直的判斷,屬于基礎(chǔ)題.8、B【解析】
利用空間直線的位置關(guān)系逐一分析判斷得解.【詳解】①為假命題.可舉反例,如a,b,c三條直線兩兩垂直;②平行于同一條直線的兩條直線平行,是真命題;③若直線滿足,則,是真命題;④是假命題,如圖甲所示,c,d與異面直線,交于四個點,此時c,d異面,一定不會平行;當(dāng)點B在直線上運動(其余三點不動),會出現(xiàn)點A與點B重合的情形,如圖乙所示,此時c,d共面且相交.故答案為B【點睛】本題主要考查空間直線的位置關(guān)系,意在考查學(xué)生對該知識的理解掌握水平和分析推理能力.9、C【解析】
先求出向量,再根據(jù)向量的數(shù)量積求出夾角的余弦值.【詳解】∵,∴.設(shè)向量的夾角為,則.故選C.【點睛】本題考查向量的線性運算和向量夾角的求法,解題的關(guān)鍵是求出向量的坐標(biāo),然后根據(jù)數(shù)量積的定義求解,注意計算的準(zhǔn)確性,屬于基礎(chǔ)題.10、C【解析】
利用奇函數(shù)的定義,結(jié)合反三角函數(shù),即可得出結(jié)論.【詳解】又,時,,故選:C.【點睛】本題考查奇函數(shù)的定義、反三角函數(shù),考查學(xué)生的計算能力,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、②【解析】
③①可由課本推論知正確;②可舉反例;④可進(jìn)行證明.【詳解】命題①平行于同一直線的兩條直線互相平行,由課本推論知是正確的;②垂直于同一平面的兩個平面互相平行,是錯誤的,例如正方體的上底面,前面和右側(cè)面,是互相垂直的關(guān)系;③根據(jù)課本推論知結(jié)論正確;④若三棱錐中,,,則點在平面內(nèi)的射影是的垂心這一結(jié)論是正確的;作出B在底面的射影O,連結(jié)AO,DO,則,同理,,進(jìn)而得到O為三角形的垂心.
故答案為②【點睛】這個題目考查了命題真假的判斷,一般這類題目可以通過課本的性質(zhì)或者結(jié)論進(jìn)行判斷;也可以通過舉反例來解決這個問題.12、-1【解析】
由約束條件作出可行域,由圖得到最優(yōu)解,求出最優(yōu)解的坐標(biāo),數(shù)形結(jié)合得答案.【詳解】由x,y滿足約束條件作出可行域如圖,由圖可知,目標(biāo)函數(shù)的最優(yōu)解為A,聯(lián)立,解得A(﹣1,1).∴z=3x﹣2y的最小值為﹣3×1﹣2×1=﹣1.故答案為:﹣1.【點睛】本題考查了簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.13、或.【解析】
設(shè)直線的方程為,利用已知列出方程,①和②,解方程即可求出直線方程【詳解】設(shè)直線的方程為.因為點在直線上,所以①.因為直線與兩坐標(biāo)軸圍成的三角形的面積為4,所以②.由①②可知或解得或故直線的方程為或,即或.【點睛】本題考查截距式方程和直線與坐標(biāo)軸形成的三角形面積問題,屬于基礎(chǔ)題14、【解析】
利用遞推關(guān)系,當(dāng)時,,當(dāng)時,,即可求出.【詳解】由題知:當(dāng)時,.當(dāng)時,.檢驗當(dāng)時,,所以.故答案為:【點睛】本題主要考查根據(jù)數(shù)列的前項和求數(shù)列的通項公式,體現(xiàn)了分類討論的思想,屬于簡單題.15、【解析】試題分析:根據(jù)正余弦函數(shù)的定義,令,則可以得出,即.可以得出,解得,.那么,,所以故本題正確答案為.考點:三角函數(shù)的概念.16、512【解析】
由題設(shè)條件知和是方程的兩個實數(shù)根,解方程并由公比q為整數(shù),知,,由此能夠求出公比,從而得到.【詳解】是等比數(shù)列,
,,
,,
和是方程的兩個實數(shù)根,
解方程,
得,,
公比q為整數(shù),
,,
,解得,
.故答案為:512【點睛】本題考查等比數(shù)列的通項公式的求法,利用了等比數(shù)列下標(biāo)和的性質(zhì),是基礎(chǔ)題.解題時要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價轉(zhuǎn)化.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2),,(3)【解析】
(1)由函數(shù)圖像過定點,代入運算即可得解;(2)由三角函數(shù)的單調(diào)增區(qū)間的求法求解即可;(3)由,求解不等式即可得解.【詳解】解:(1)因為函數(shù)圖象過點,所以,即.因為,所以.(2)由(1)得,所以當(dāng),,即,時,是增函數(shù),故的單調(diào)遞增區(qū)間為,.(3)由,得,所以,,即,,所以時,x的集合為.【點睛】本題考查了利用函數(shù)圖像的性質(zhì)求解函數(shù)解析式,重點考查了三角函數(shù)單調(diào)區(qū)間的求法及解三角不等式,屬基礎(chǔ)題.18、【解析】
求出直線的傾斜角,可得所求直線的傾斜角,從而可得斜率,再利用點斜式可得結(jié)果.【詳解】因為直線的斜率為,所以其傾斜角為30°,所以,所求直線的傾斜角為60°故所求直線的斜率為,又所求直線經(jīng)過點,所以其方程為,即,故答案為:.【點睛】本題主要考查直線的斜率與傾斜角,考查了直線點斜式方程的應(yīng)用,意在考查對基礎(chǔ)知識的掌握情況,屬于基礎(chǔ)題.19、(Ⅰ)(Ⅱ),【解析】
(Ⅰ)設(shè)正項等比數(shù)列的公比為且,由已知列式求得首項與公比,則數(shù)列的通項公式可求;(Ⅱ)由已知求得,再由數(shù)列的分組求和即可.【詳解】(Ⅰ)由題意知,等比數(shù)列的公比,且,所以,解得,或(舍去),則所求數(shù)列的通項公式為.(Ⅱ)由題意得,故【點睛】本題主要考查等差數(shù)列與等比數(shù)列的通項公式及前項和公式的應(yīng)用,同時考查了待定系數(shù)法求數(shù)列的通項公式和分組求和法求數(shù)列的和.20、(1)證明見解析(2)【解析】
(1)連接交于點O,再證明,得證;(2)先求,可得.再結(jié)合即可得解.【詳解】證明:(1)連接交于點O,連接OM,為平行四邊形,為的中點,又M為AC的中點,.又平面,平面.平面.(2)平面ABC,,.又,由M為AC中點,,,又O為的中點,.,.所以異面直線與所成角的大小為.【點睛】本題考查了線面平行的判定定理,重點考查了異面直線所成角的求法,屬基礎(chǔ)題.21、(1);(2);(3)填表見解析,作圖見解析,().【解析】
(1)利用二倍角公式和輔助
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025委托招標(biāo)代理合同
- 2025【合同范本】建筑工程施工合同示本
- 2025二手空調(diào)購銷合同范本
- 長城遺址修繕方案
- 促銷活動合同范例
- 2024年六年級品社下冊《去中學(xué)看看》說課稿2 蘇教版
- 配件報價實施方案
- 2024年五年級英語下冊 Unit 4 Did You Have a Nice Trip Lesson 19 Li Ming Goes Home說課稿 冀教版(三起)
- 貴州籠式球場護(hù)欄施工方案
- 砂石加工賬目處理方案
- 醫(yī)藥高等數(shù)學(xué)智慧樹知到課后章節(jié)答案2023年下浙江中醫(yī)藥大學(xué)
- 城市道路智慧路燈項目 投標(biāo)方案(技術(shù)標(biāo))
- 水泥采購?fù)稑?biāo)方案(技術(shù)標(biāo))
- 醫(yī)院招標(biāo)采購管理辦法及實施細(xì)則(試行)
- 初中英語-Unit2 My dream job(writing)教學(xué)設(shè)計學(xué)情分析教材分析課后反思
- 廣州市勞動仲裁申請書
- 江西省上饒市高三一模理綜化學(xué)試題附參考答案
- 23-張方紅-IVF的治療流程及護(hù)理
- 頂部板式吊耳計算HGT-20574-2018
- 因數(shù)和倍數(shù)復(fù)習(xí)思維導(dǎo)圖
- LY/T 2986-2018流動沙地沙障設(shè)置技術(shù)規(guī)程
評論
0/150
提交評論