版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆山西省大同市鐵路第一中學高一下數學期末質量跟蹤監(jiān)視模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在中,角所對的邊分別為,若.且,則的值為()A. B.C. D.或2.直線與直線平行,則()A. B.或 C. D.或3.已知扇形圓心角為,面積為,則扇形的弧長等于()A. B. C. D.4.若是等差數列,首項,,,則使前n項和成立的最大正整數n=()A.2017 B.2018 C.4035 D.40345.如圖,在矩形中,,,點滿足,記,,,則的大小關系為()A. B.C. D.6.如圖,在正方體,點在線段上運動,則下列判斷正確的是()①平面平面②平面③異面直線與所成角的取值范圍是④三棱錐的體積不變A.①② B.①②④ C.③④ D.①④7.函數是().A.周期為的偶函數 B.周期為的奇函數C.周期為的偶函數 D.周期為奇函數8.圓與圓的位置關系為()A.相交 B.相離 C.相切 D.內含9.等比數列中,,則A.20 B.16 C.15 D.1010.祖暅原理也就是“等積原理”,它是由我國南北朝杰出的數學家祖沖之的兒子祖暅首先提出來的.祖暅原理的內容是:“冪勢既同,則積不容異”,“勢”即是高,“冪”是面積.意思是,如果夾在兩平行平面間的兩個幾何體,被平行于這兩個平行平面的平面所截,如果兩個截面的面積總相等,那么這兩個幾何體的體積相等.已知,兩個平行平面間有三個幾何體,分別是三棱錐、四棱錐、圓錐(高度都是h),其中:三棱錐的體積為V,四棱錐的底面是邊長為a的正方形,圓錐的底面半徑為r,現(xiàn)用平行于這兩個平面的平面去截三個幾何體,如果得到的三個截面面積總相等,那么,下面關系式正確的是()A.,, B.,,C.,, D.,,二、填空題:本大題共6小題,每小題5分,共30分。11.分形幾何學是美籍法國數學家伯努瓦.B.曼德爾布羅特在20世紀70年代創(chuàng)立的一門新學科,它的創(chuàng)立,為解決傳統(tǒng)科學眾多領域的難題提供了全新的思路,下圖是按照一定的分形規(guī)律生長成一個數形圖,則第13行的實心圓點的個數是________12.英國物理學家和數學家艾薩克·牛頓(Isaacnewton,1643-1727年)曾提出了物體在常溫環(huán)境下溫度變化的冷卻模型.現(xiàn)把一杯溫水放在空氣中冷卻,假設這杯水從開始冷卻,x分鐘后物體的溫度滿足:(其中…為自然對數的底數).則從開始冷卻,經過5分鐘時間這杯水的溫度是________(單位:℃).13.已知等比數列an中,a3=2,a14.等腰直角中,,CD是AB邊上的高,E是AC邊的中點,現(xiàn)將沿CD翻折成直二面角,則異面直線DE與AB所成角的大小為________.15.若直線始終平分圓的周長,則的最小值為________16.已知中,的對邊分別為,若,則的周長的取值范圍是__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數f(x)=3sin(2x+π3)-4cos(1)求函數g(x)的解析式;(2)求函數g(x)在[π18.如圖,在三棱柱中,平面平面,,,為棱的中點.(1)證明:;(2)求三棱柱的高.19.設函數.(1)若,解不等式;(2)若對一切實數,恒成立,求實數的取值范圍.20.在中,內角A,B,C的對邊分別為a,b,c,且滿足.(1)求內角B的大??;(2)設,,的最大值為5,求k的值.21.已知數列滿足:,,數列滿足:().(1)證明:數列是等比數列;(2)求數列的前項和,并比較與的大小.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
首先根據余弦定理,得到或.再分別計算即可.【詳解】因為,所以,即:,解得:或.當時,.當時,.所以或.故選:D【點睛】本題主要考查余弦定理解三角形,熟記公式為解題的關鍵,屬于中檔題.2、B【解析】
兩直線平行,斜率相等;按,和三類求解.【詳解】當即時,兩直線為,,兩直線不平行,不符合題意;當時,兩直線為,兩直線不平行,不符合題意;當即時,直線的斜率為,直線的斜率為,因為兩直線平行,所以,解得或,故選B.【點睛】本題考查直線平行的斜率關系,注意斜率不存在和斜率為零的情況.3、C【解析】
根據扇形面積公式得到半徑,再計算扇形弧長.【詳解】扇形弧長故答案選C【點睛】本題考查了扇形的面積和弧長公式,解出扇形半徑是解題的關鍵,意在考查學生的計算能力.4、D【解析】
由等差數列的性質可得,,由等差數列前項和公式可得則,,得解.【詳解】解:由是等差數列,又,所以,又首項,,則,,則,,即使前n項和成立的最大正整數,故選:D.【點睛】本題考查了等差數列的性質,重點考查了等差數列前項和公式,屬中檔題.5、C【解析】
可建立合適坐標系,表示出a,b,c的大小,運用作差法比較大小.【詳解】以為圓心,以所在直線為軸、軸建立坐標系,則,,,設,則,,,,,,,,故選C.【點睛】本題主要考查學生的建模能力,意在考查學生的理解能力及分析能力,難度中等.6、B【解析】
①連接DB1,容易證明DB1⊥面ACD1,從而可以證明面面垂直;②連接A1B,A1C1容易證明平面BA1C1∥面ACD1,從而由線面平行的定義可得;③分析出A1P與AD1所成角的范圍,從而可以判斷真假;④=,C到面AD1P的距離不變,且三角形AD1P的面積不變;【詳解】對于①,連接DB1,根據正方體的性質,有DB1⊥面ACD1,DB1?平面PB1D,從而可以證明平面PB1D⊥平面ACD1,正確.②連接A1B,A1C1容易證明平面BA1C1∥面ACD1,從而由線面平行的定義可得A1P∥平面ACD1,正確.③當P與線段BC1的兩端點重合時,A1P與AD1所成角取最小值,當P與線段BC1的中點重合時,A1P與AD1所成角取最大值,故A1P與AD1所成角的范圍是,錯誤;④=,C到面AD1P的距離不變,且三角形AD1P的面積不變.∴三棱錐A﹣D1PC的體積不變,正確;正確的命題為①②④.故選B.【點睛】本題考查空間點、線、面的位置關系,空間想象能力,中檔題.7、B【解析】因,故是奇函數,且最小正周期是,即,應選答案B.點睛:解答本題時充分運用題設條件,先借助二倍角的余弦公式的變形,將函數的形式進行化簡,然后再驗證函數的奇偶性與周期性,從而獲得問題的答案.8、B【解析】
首先把兩個圓的一般方程轉化為標準方程,求出其圓心坐標和半徑,再比較圓心距與半徑的關系即可.【詳解】有題知:圓,即:,圓心,半徑.圓,即:,圓心,半徑.所以兩個圓的位置關系是相離.故選:B【點睛】本題主要考查圓與圓的位置關系,比較圓心距和半徑的關系是解決本題的關鍵,屬于簡單題.9、B【解析】試題分析:由等比中項的性質可得:,故選擇B考點:等比中項的性質10、D【解析】
由祖暅原理可知:三個幾何體的體積相等,根據椎體體積公式即可求解.【詳解】由祖暅原理可知:三個幾何體的體積相等,則,解得,由,解得,所以.故選:D【點睛】本題考查了椎體的體積公式,需熟記公式,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
觀察圖像可知每一個實心圓點的下一行均分為一個實心圓點與一個空心圓點,每個空心圓點下一行均為實心圓點.再利用規(guī)律找到行與行之間的遞推關系即可.【詳解】由圖像可得每一個實心圓點的下一行均分為一個實心圓點與一個空心圓點,每個空心圓點下一行均為實心圓點.故從第三行開始,每行的實心圓點數均為前兩行之和.即.故第1到第13行中實心圓點的個數分別為:.故答案為:【點睛】本題主要考查了遞推數列的實際運用,需要觀察求得行與行之間的實心圓點的遞推關系,屬于中等題型.12、45【解析】
直接利用對數的運算性質計算即可,【詳解】.故答案為:45.【點睛】本題考查對數的運算性質,考查計算能力,屬于基礎題.13、4【解析】
先計算a5【詳解】aaa故答案為4【點睛】本題考查了等比數列的計算,意在考查學生的計算能力.14、【解析】
取的中點,連接,則與所成角即為與所成角,根據已知可得,,可以判斷三角形為等邊三角形,進而求出異面直線直線DE與AB所成角.【詳解】取的中點,連接,則,直線DE與AB所成角即為與所成角,,,,,,即三角形為等邊三角形,異面直線DE與AB所成角的大小為.故答案為:【點睛】本題考查立體幾何中的翻折問題,考查了異面直線所成的角,考查了學生的空間想象能力,屬于基礎題.15、9【解析】
平分圓的直線過圓心,由此求得的等量關系式,進而利用基本不等式求得最小值.【詳解】由于直線始終平分圓的周長,故直線過圓的圓心,即,所以.【點睛】本小題主要考查直線和圓的位置關系,考查利用基本不等式求最小值,屬于基礎題.16、【解析】中,由余弦定理可得,∵,∴,化簡可得.∵,∴,解得(當且僅當時,取等號).故.再由任意兩邊之和大于第三邊可得,故有,故的周長的取值范圍是,故答案為.點睛:由余弦定理求得,代入已知等式可得,利用基本不等式求得,故.再由三角形任意兩邊之和大于第三邊求得,由此求得△ABC的周長的取值范圍.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)g(x)=sin【解析】
(1)首先化簡三角函數式,然后確定平移變換之后的函數解析式即可;(2)結合(1)中函數的解析式確定函數的最大值即可.【詳解】(1)f(x)==3(sin2xcos=3由題意得g(x)=sin[2(x+π化簡得g(x)=sin(2x+π(2)∵π12可得π3∴-1當x=π6時,函數當x=π2時,函數g(x)有最小值【點睛】本題主要考查三角函數圖像的變換,三角函數最值的求解等知識,意在考查學生的轉化能力和計算求解能力.18、(1)證明見解析(2)【解析】
(1)連接,,作為棱的中點,連結,,由平面平面,得到平面,則,再由,即可證明平面,從而得證;(2)根據等體積法求出點面距.【詳解】(1)證明:連接,.∵,,∴是等邊三角形.作為棱的中點,連結,,∴.∵平面平面,平面平面,平面,∴平面.∵平面,∴.∵,∴平行四邊形是菱形.∴.又,分別為,的中點,∴,∴.又,平面,平面.∴平面.又平面,∴.(2)解:連接,∵,,∴為正三角形.∵為的中點,∴,同理可得又∵平面平面,且平面平面,平面,∴平面.∴,又三棱柱的高即點到平面的距離.在中,,,則.又∵,∴,則.【點睛】本題考查線面垂直,線線垂直的證明,三棱錐的體積及點到平面的距離的計算,屬于中檔題.19、(1)或;(2)【解析】
(1)時,不等式化為,求解即可;(2)分和兩種情況分類討論,并結合二次函數的性質,可求出答案.【詳解】(1)時,不等式化為,即,解得或,即解集為:或.(2)當時,,符合題意,當時,由題意得,解得,綜上所述,實數的取值范圍是:.【點睛】本題考查不等式恒成立問題,考查一元二次不等式的解法,考查學生的計算求解能力,屬于基礎題.20、(1),(2)【解析】
解:(1)(3分)又在中,,所以,則………(5分)(2),.………………(8分)又,所以,所以.所以當時,的最大
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 從生活中學習提升綜合素養(yǎng)計劃
- 揮發(fā)性有機物行業(yè)相關投資計劃提議范本
- 個性化教學與學生差異化發(fā)展的探索計劃
- 劇裝道具相關工藝美術品行業(yè)相關投資計劃提議范本
- 課程改革與新教材實施計劃
- ZRO2陶瓷制品行業(yè)相關投資計劃提議
- 環(huán)保教育在班級活動中的融入計劃
- 《保險經營與監(jiān)管》課件
- 2023-2024學年江蘇省南京市江寧區(qū)部編版五年級上冊期末考試語文試卷(原卷版)-A4
- 《雞白痢培訓課件》課件
- 超聲透藥治療儀
- 2023年北京語言大學新編長聘人員招聘筆試真題
- 第四章 牛頓運動定律 章末檢測題(基礎卷)(含答案)2024-2025學年高一上學期物理人教版(2019)必修第一冊
- IEC 62368-1標準解讀-中文
- 化工設施設備維護保養(yǎng)方案
- 《實數(1)》參考課件2
- GB/T 31961-2024載貨汽車和客車輪輞規(guī)格系列
- 《人際交往》教學設計
- QC課題提高金剛砂地面施工一次合格率
- 2024年全國甲卷《霜降夜》解讀
- 第一章-新能源汽車概論
評論
0/150
提交評論