2023-2024學(xué)年廣東省廣州六中高二(下)月考數(shù)學(xué)試卷(含答案)_第1頁
2023-2024學(xué)年廣東省廣州六中高二(下)月考數(shù)學(xué)試卷(含答案)_第2頁
2023-2024學(xué)年廣東省廣州六中高二(下)月考數(shù)學(xué)試卷(含答案)_第3頁
2023-2024學(xué)年廣東省廣州六中高二(下)月考數(shù)學(xué)試卷(含答案)_第4頁
2023-2024學(xué)年廣東省廣州六中高二(下)月考數(shù)學(xué)試卷(含答案)_第5頁
已閱讀5頁,還剩6頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

第=page11頁,共=sectionpages11頁2023-2024學(xué)年廣東省廣州六中高二(下)月考數(shù)學(xué)試卷一、單選題:本題共8小題,每小題3分,共24分。在每小題給出的選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若z?21+i=i,i為虛數(shù)單位,則z?A.i B.?i C.1 D.?12.已知M、N是全集U的兩個非空子集.若M∩(?UN)=M,則下列說法可能正確的是A.M∪(?UN)=U B.(?UM)∪N=M3.2023年10月31日,神舟十六號載人飛船返回艙在東風(fēng)著陸場成功著陸,激發(fā)了學(xué)生對航天的熱愛.某校組織高中學(xué)生參加航天知識競賽,現(xiàn)從中隨機(jī)抽取100名學(xué)生成績的頻率分布直方圖如圖所示,設(shè)這組樣本數(shù)據(jù)的75%分位數(shù)為x,眾數(shù)為y,則(

)A.x=88,y=90

B.x=83,y=90

C.x=83,y=85

D.x=88,y=854.如圖是函數(shù)f(x)的部分圖象,則f(x)的解析式可能為(

)A.f(x)=sin5x2x?2?x

B.f(x)=5.已知函數(shù)f(x)=|x|?1e|x|,若a=f((12)?0.6),b=f(log122A.a<b<c B.c<b<a C.a<c<b D.b<c<a6.已知橢圓x2a2+y2b2=1(a>b>0)的左、右焦點(diǎn)分別為F1A.12 B.32 C.7.過原點(diǎn)的直線m,n與分別與曲線f(x)=ex,g(x)=lnx相切,則直線m,n斜率的乘積為(

)A.?1 B.1 C.e D.18.祖暅?zhǔn)俏覈媳背瘯r(shí)期杰出的數(shù)學(xué)家和天文學(xué)家祖沖之的兒子,他提出了一條原理:“冪勢既同,則積不容異”.這里的“冪”指水平截面的面積,“勢”指高.這句話的意思是:兩個等高的幾何體若在所有等高處的水平截面的面積相等,則這兩個幾何體體積相等.利用祖暅原理可以將半球的體積轉(zhuǎn)化為與其同底等高的圓柱和圓錐的體積之差.圖1是一種“四腳帳篷”的示意圖,其中曲線AOC和BOD均是以2為半徑的半圓,平面AOC和平面BOD均垂直于平面ABCD,用任意平行于帳篷底面ABCD的平面截帳篷,所得截面四邊形均為正方形.模仿上述半球的體積計(jì)算方法,可以構(gòu)造一個與帳篷同底等高的正四棱柱,從中挖去一個倒放的同底等高的正四棱錐(如圖2),從而求得該帳篷的體積為(

)

A.8π3 B.16π3 C.163二、多選題:本題共3小題,共9分。在每小題給出的選項(xiàng)中,有多項(xiàng)符合題目要求。9.已知x=1和x=3是函數(shù)f(x)=ax3+bx2?3x+k(a,b∈R)的兩個極值點(diǎn),且函數(shù)f(x)A.?43 B.43 C.?110.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,φ∈R)在區(qū)間(π4,πA.f(π3)=0

B.若f(π3?x)=f(x),則f(x)的最小正周期為2π3

C.關(guān)于x的方程f(x)=1在區(qū)間[0,2π)上最多有4個不相等的實(shí)數(shù)解

D.若f(x)在區(qū)間11.已知直線y=a與曲線y=xex相交于A,B兩點(diǎn),與曲線y=lnxx相交于B,C兩點(diǎn),A,B,C的橫坐標(biāo)分別為x1,xA.x2=aex2 B.x2三、填空題:本題共3小題,每小題3分,共9分。12.己知向量a,b滿足|a|=1,|b|=3,13.在等比數(shù)列{an}中,a1+a2+14.定義在R上的函數(shù)f(x)=ex?1+12x2?2x,若存在實(shí)數(shù)x使不等式四、解答題:本題共5小題,共77分。解答應(yīng)寫出文字說明,證明過程或演算步驟。15.(本小題13分)

記數(shù)列{an}的前n項(xiàng)和為Tn,且a1=1,an=Tn?1(n≥2).

(1)求數(shù)列{an16.(本小題15分)

記△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,已知c(cosA+1)=3asin∠ACB.

(1)求A;

(2)設(shè)AB的中點(diǎn)為D,若CD=a,且△ABC的周長為5+7,求17.(本小題15分)

如圖,在四棱錐P?ABCD中,底面ABCD為正方形,平面PAC⊥底面ABCD,PA⊥PC,且PA=PC,M是PA的中點(diǎn).

(1)求證:PA⊥平面BMD;

(2)求平面AMC與平面DMC夾角的正弦值.18.(本小題17分)

已知雙曲線C:x2a2?y2b2=1(a>0,b>0)過點(diǎn)A(42,3),且焦距為10.

(1)求C的方程;

(2)已知點(diǎn)B(42,?3),D(22,0),19.(本小題17分)

已知函數(shù)f(x)=12ax2+(a+1)x+lnx,a∈R.

(1)若x=1是f(x)的極值點(diǎn),求a的值;

(2)判斷f(x)的單調(diào)性;

(3)已知f(x)=12ax2+x有兩個解x1,x2(x1<x2).參考答案1.B

2.D

3.D

4.D

5.C

6.C

7.B

8.D

9.BD

10.ABD

11.ACD

12.1

13.?44

14.[1,+∞)

15.解:(1)當(dāng)n≥2時(shí),an=Tn?1=Tn?Tn?1,

所以Tn=2Tn?1,

所以數(shù)列{Tn}是以2為公比,1為首項(xiàng)的等比數(shù)列,

所以Tn=2n?1,

所以an=Tn?Tn?1=2n?1?2n?2=2n?2(n≥2),

又a1=1不滿足16.解:(1)由條件及正弦定理可得sinC(cosA+1)=3sinAsinC,

因?yàn)镃∈(0,π),所以sinC≠0,

所以cosA+1=3sinA,整理得sin(A?π6)=12,

又因?yàn)锳∈(0,π),所以?π6<A?π6<5π6,

所以A?π6=π6,

解得A=π3;

(2)在△ACD中,由余弦定理得CD2=b2+c24?2b?c2cosA,

而A=π3,CD=a,所以a2=b2+c2417.解(1)證明:設(shè)BD與AC交于O,連接MO,

因?yàn)锳C,BD為正方形ABCD的對角線,

所以O(shè)為AC中點(diǎn),且AC⊥BD,

因?yàn)镸是PA的中點(diǎn),所以O(shè)M//PC,

因?yàn)镻A⊥PC,所以PA⊥OM,

因?yàn)槠矫鍼AC⊥底面ABCD,

平面PAC∩平面ABCD=AC,BD?平面ABCD,

所以BD⊥平面PAC,因?yàn)镻A?平面PAC,所以PA⊥BD,

因?yàn)镺M,BD?平面BMD,OM∩BD=O,

所以PA⊥平面BMD;

(2)因?yàn)镻A=PC,O為AC的中點(diǎn),所以PO⊥AC,

因?yàn)槠矫鍼AC⊥底面ABCD,平面PAC∩平面ABCD=AC,PO?平面PAC,

所以PO⊥平面ABCD,

因?yàn)镻A⊥PC,所以PO=12AC,

以O(shè)為原點(diǎn),OC,OD,OP所在的直線分別為x軸,y軸,z軸,建立如圖所示的空間直角坐標(biāo)系O?xyz,

設(shè)正方形的邊長為4,則AC=42,故OA=OC=OP=22,

則A(?22,0,0),C(22,0,0),P(0,0,22),M(?2,0,2),D(0,22,0),

所以CD=(?22,22,0),CM=(?32,0,2),

設(shè)平面MCD的一個法向量m=(x1,y1,z1),

所以18.解:(1)由雙曲線C:x2a2?y2b2=1(a>0,b>0)過點(diǎn)A(42,3),且焦距為10,

可得c=a2+b2=5,32a2?9b2=1,

解得a=4,b=3,

則雙曲線C的方程為x216?y29=1;

(2)證明:設(shè)E(42,n),G(x1,y1),H(x2,y2),

直線DE的方程為y=n42?219.解:(1)∵f(x)=12ax2+(a+1)x+lnx(x>0),

∴f′(x)=ax+(a+1)+1x=ax2+(a+1)x+1x=(ax+1)(x+1)x(x>0),

又∵1是f(x)的極值點(diǎn),

∴f′(1)=0,

即a+(a+1)+1=0,

解得a=?1,

當(dāng)a=?1時(shí),f′(x)=(1?x)(x+1)x,

∴x∈(0,1)時(shí),f′(x)>0,

x∈(1,+∞)時(shí),f′(x)<0,

∴當(dāng)x∈(0,1)時(shí),f(x)單調(diào)遞增,

當(dāng)x∈(1,+∞)時(shí),f(x)單調(diào)遞減,

則f(x)在x=1處取極大值,

∴1是f(x)的極值點(diǎn),滿足題設(shè).

綜上,a=?1;

(2)由(1)知,

當(dāng)a≥0時(shí),f′(x)=(ax+1)(x+1)x>0,

∴f(x)在(0,+∞)上單調(diào)遞增;

當(dāng)a<0時(shí),令f′(x)>0,得0<x<?1a;

令f′(x)<0,得x>?1a;

∴f(x)在(0,?1a)上單調(diào)遞增,在(?1a,+∞)上單調(diào)遞減,

綜上,當(dāng)a≥0時(shí),f(x)在(0,+∞)上單調(diào)遞增;

當(dāng)a<0時(shí),f(x)在(0,?1a)上單調(diào)遞增,在(?1a,+∞)上單調(diào)遞減;

(3)(i)由f(x)=12ax2+x,得ax+lnx=0,

即ax+lnx=0有兩個解x1,x2(x1<x2),

令g(x)=ax+lnx(x>0),

則g′(x)=a+1x=ax+1x,且g(x)在(0,+∞)上有兩個零點(diǎn);

當(dāng)a≥0時(shí),g′(x)=ax+1x>0,

∴g(x)在(0,+∞)上單調(diào)遞增,

則g(x)在(0,+∞)上沒有兩個零點(diǎn),不滿足題意;

當(dāng)a<0時(shí),令g′(x)>0,得0<x<?1a;

令g′(x)<0,得x>?1a,

∴g(x)在(0,?1a)上單調(diào)遞增,在(?1a,+∞)上單調(diào)遞減,

即g(x)的極大值為g(?1a),

為使g(x)在(0,+∞)上有兩個零點(diǎn),

則g(?1a)>0,即a?(?1a)?ln(?1a)>0,

解得?1e<a<0,

當(dāng)0<x<?1a時(shí),易知?1a>e,

∵g(1)=a+ln1=a<0,

∴g(1)?g(?1a)<0,

又g(x)在(0,?1a)上單調(diào)遞增,

∴g(x)在(0,?1a)有唯一零點(diǎn);

當(dāng)x>?1a時(shí),

令φ(x)=e

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論