




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
Chapter5
DynamicsofParticleMainContents§5.1Newton’sLawsofMotion§5.2DifferentialEquationsofmotionofaParticle
§5.3ThetwotypesofbasicproblemsofparticlekineticsKineticsofaParticle
Instatics,westudytheforceactingonabody,andstudytheproblemsofequilibriumofbodiesthatareactedonforces,butdon’tstudythemotionofabodyactedonunbalancedforces;Inkinematics,weonlystudythemotionofabodyfromthegeometricalaspects,anddonotaccountfortherelationsbetweenkinematicsofaparticleandtheforcethatactsontheparticle;Inkinetics,wewilldeterminetherelationsbetweenkinematicsofaparticleandtheforcethatactsontheparticle.Comparedwiththestaticsandkinematics,kineticsisthestudyofthemoregeneralruleofthemechanicalmotionofamaterialbody.Inkinetics,weusuallyusetwomodelsofmechanics:particleandparticles.Whentheshapeandsizeofabodyisnotsignificant;arigidbodywithtranslationalmotionmaybedefinedasaparticle,theparticleconcentrateallmassoftherigidbody,andlieinthecenterofmassoftherigidbody;Sometimes,thebodymaybemodeledasaparticle,andtherotationalmotionofthebodycanbeignored;Aparticle:aparticlehasamassbutnegligiblesizeandshape.Specifically,atwhatpointcanabodybeabstractedandsimplifiedasaparticle?Forexample,instudyingthemotionoftheeartharoundthesun,itispermissibletoconsidertheearthasaparticle.KineticsofaParticleAsystemofparticles:asystemcomposedoffiniteorinfiniteparticlescontactedeachother.Ifabodycannotbestudiedasaparticle,itmustbeaccountedasasystemofparticles.Theconceptofasystemofparticlesisveryuniversal,itincludesarigidbody,adeformablebody,andasystemcomposedofmanyparticlesandbodies.
KineticsofaParticle
Kineticscanbedividedintotwoparts:kineticsofaparticleandkineticsofasystemofparticles(includekineticsofrigidbodies).
Inthischapterwediscusskineticsofaparticle,thatistodeterminetherelationsbetweenkinematicsofaparticleandtheforcethatactsontheparticle.Asfundamentalsofothertheoryofkinetics,kineticsofaparticlebasedonthefundamentalsofNewton’sthreelaws.Thischapteremphasizehowtosolvethetwotypesofproblemsofparticlekineticsapplyingbasicequationsofkineticsandusingmethodsofdifferentialandintegralcalculus.KineticsofaParticle§5.1Newton’sLawsofMotionNewtonfirstlaw(inertialaw):
Intheabsenceofappliedforces,aparticleoriginallyatrestormovingwithconstantspeedinastraightlinewillremainatrestorcontinuetomovewithconstantspeedinastraightline.Inertia:apropertyofmatterbywhichitcontinuesinitsexistingstateofrestoruniformmotioninastraightline,unlessthatstateischangedbyanexternalforce.Therefore,thislawisalsocalledtheinertialaw.Newtonsecondlaw:Ifaparticleissubjectedtoaforce,theparticlewillbeaccelerated.Theaccelerationoftheparticlewillbeinthedirectionoftheforce,andthemagnitudeoftheaccelerationwillbeproportionaltothemagnitudeoftheforceandinverselyproportionaltothemassoftheparticle.Newtonsecondlawmaybeexpressedmathematicallyasfollows.§5.1Newton’sLawsofMotionorTheaboveformulaisthebasicequationforsolvingdynamicproblems,whichiscalledthebasicdynamicequation.Thisformuladiscribestherelationshipbetweenthemotionofaparticleandtheforcesactingontheparticle.
Newtonthirdlaw(thelawofactionandreaction):Foreveryaction,thereisanequalandoppositereaction;thatis,theforcesofinteractionbetweentwoparticlesareequalinmagnitudeandoppositeindirection,andcollinear.Itshouldbenotedthatthefirsttwolawsinthefundamentalequationsofdynamicsonlyapplyininertialcoordinates.Newtonthirdlawhasnothingtodowiththeselectionofcoordinatesystems,anditappliestoallcoordinatesystems.§5.1Newton’sLawsofMotionMechanicalsystemofunits
Inmechanics,weusuallyuseInternationalsystemofunits(SI).IntheSIsystem,allunitsaredividedintothreecategoriesbaseunits,derivedunitsandauxiliaryunits.ThebasedimensionsintheSIsystemaremass,lengthandtime,andthebaseunitsarekilogram(kg),meter(m)andsecond(s).Aunitofforceisderivedunits,beingcalledNewton(N).OneNewtonforcemakeonekilogramofmassgenerateonemeter/second2ofaccelerate,thatisRadianisanauxiliaryunit,canbeusedtoformderivedunits,forexampleangularvelocityunitandangularaccelerationunit,andsoon.§5.1Newton’sLawsofMotionInengineering,weoftenuseengineeringsystemofunits.Thebasedimensionsinengineeringsystemofunitsareforcelengthandtime,andthebaseunitsarekilogramforce(kgf),meter(m)andsecond(s).Massunitisderivedunits,whenonekilogramforcemakeabodygenerateonemeter/second2ofaccelerate,themassofthebodyisoneengineeringunitmass.Thatis§5.1Newton’sLawsofMotionWhenonekilogramforce(9.80665Newton)generateacceleration,themassis9.80665kilogram,hence1massofengineeringunitmass=9.80665kilogram≈9.8kilogramOnekilogramforce(kgf)isthegravityactingonabodythathasonekilogramofmassatalatitudeofofthesea.Hence§5.1Newton’sLawsofMotionThefundamentalequationsofmotionarerepresentedasequationsindifferentialform,knownasthedifferentialequationsofmotionofaparticle.1.VectorformWhenaparticlemovesinanarbitraryspatialcurve,itspositionisrepresentedbythevectordiameter
derivedfromanarbitraryspatialfixedpointO,asshowninthefigure.§5.2DifferentialEquationsofmotionofaParticle
2.Formsinrectangularcoordinates§5.2DifferentialEquationsofmotionofaParticle
3.Formsinpathn-tcoordinates§5.2DifferentialEquationsofmotionofaParticle
Applyingthedifferentialequationsofmotionofaparticlewecansolvetwotypesofproblemsofparticlekinetics.§5.3ThetwotypesofbasicproblemsofparticlekineticsThefirstbasicproblem:knowingthemotionofaparticle,todeterminetheforceactingontheparticle.Thatis,knowingequationsofmotionofaparticle,thesecondderivativewithrespecttotimeofthepositionvectoriscalledtheacceleration,whichissubstitutedintothefundamentalequationsofmotionofaparticle,weobtaintheforceactingontheparticle.Thesecondbasicproblem:knowingtheforceactingonaparticle,todeterminethemotionoftheparticle.(forexample,todeterminethevelocity,trajectoryandequationsofmotionofaparticleandsoon).Inthefundamentalequationsofmotionofaparticle,knowingtheforceactingonaparticle,wecanobtaintheaccelerationofthemotionoftheparticle,todeterminethevelocity,trajectory,equationsofmotionofaparticlebytheaccelerationistheintegralcalculationproblem。Example
5-1
§5.3ThetwotypesofbasicproblemsofparticlekineticsThefollowingexamplesarehowtosolvetwotypesofproblemsofparticlekineticsbyapplyingthedifferentialequationsofmotionofaparticle.,Example
5-1Solution:Firstly,choosetheparticleMastheobjectofstudy,theparticleMdoesplumb-rectilinearmotion,choosethetrajectorylineastherectangularcoordinateaxis,andthedownwarddirectionispositive.ThenputtheparticleMonthegeneralpositionofthemotiontodrawitsforcediagram.TheforcesontheparticleinthispositionaregravityPanddielectricresistanceR.ThenthedifferentialequationofmotionoftheparticleMinrectangularcoordinateiswherePxandRxaretheprojectionsofPandRontheOxaxis,respectively.wehave§5.3ThetwotypesofbasicproblemsofparticlekineticsFromtheknownequationofmotionofthemassExample
5-1ThedifferentialequationofmotioncanthenbewrittenasFromtheknownequationofmotionoftheparticlewegetso,therewas§5.3ThetwotypesofbasicproblemsofparticlekineticsExample
5-2Aparticleofmassmunderahorizontalforce
movesalongthehorizontallinefromrest.Determinetheequationofmotionoftheparticle.when
,aswellasThusgetting
Solution:Fortheproblem,forceisknown,andweneedtosolvemotion.Theforceisadiscontinuoustimefunction.Theobjectofstudyisaparticle,whichisrectilinearlymoving,andtheequationispresentedalongthedirectionofmotion.
§5.3ThetwotypesofbasicproblemsofparticlekineticsExample
5-2Thus,theequationofmotionoftheparticleiswhen
,thevelocityoftheparticle
,positionoftheparticle
thesearetheinitialconditionsat.when
,
,so
Fromtheinitialconditionsat
,ThusTheforceinthisproblemisadiscontinuousfunctionoftime,sotheanalysisshouldbesegmented,whilepayingattentiontotheinitialconditionsofeachsegment.§5.3ThetwotypesofbasicproblemsofparticlekineticsExample5-3
Solution:Taketheinitialpositionoftheobjectastheorigin,andbuildthecoordinatesystemalongthedirectionoftheobject'smotion.Motionanalysis:rectilinearmotion.
§5.3ThetwotypesofbasicproblemsofparticlekineticsEstablishdifferentialequationsofmotion:Example
5-3useSubstitutingintothedifferentialequationofmotionyieldsthusso
§5.3ThetwotypesofbasicproblemsofparticlekineticsthusExample
5-3Integrateoncemoreandget
soConsideringthatx=0att=0,wegetC3=9
§5.3ThetwotypesofbasicproblemsofparticlekineticsxyOABφβωExample
5-4Acrank-guidemechanismisshowninfigure.TheangularvelocityofthecrankOAisconstant,lengthOA=r,lengthoftheconnectingrodisAB=l.Ifλ=r/lissmaller,thepointOistheoriginofthecoordinatesystem,theequationofmotionofsliderBmaybewrittenapproximatelyasfollows:Themassofthesliderisdenotedbynotationm,
NeglectfrictionandthemassoftheconnectingrodAB,whenand,respectively,determinetheforceactingattheconnectingrodAB.§5.3ThetwotypesofbasicproblemsofparticlekineticsxBβxyOABφβωExample
5-4SoSolution:ConsideringthesliderB.Whenφ=ωt,thefree-bodydiagram(FBD)ofthesliderBshowninfigure,wheretherod(AB)istwoforcemember.Writingtheequationofmoti
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 北京2025年北京開放大學(xué)招聘14人筆試歷年參考題庫附帶答案詳解
- 加油站承包合同二零二五年
- 2025新疆中新建能源礦業(yè)有限責(zé)任公司部分崗位市場化招聘(2人)筆試參考題庫附帶答案詳解
- 滄州門面房租賃合同
- 建筑工程消防技術(shù)咨詢協(xié)議書二零二五年
- 場地承包經(jīng)營合同范例二零二五年
- 制藥企業(yè)安全生產(chǎn)教育培訓(xùn)
- 2025企業(yè)借款抵押合同協(xié)議樣本
- 2025b廣東省商品房買賣合同
- 《2025年嚴(yán)格履行合同簽訂流程的通知書》
- 軸承和主軸部件的裝配工藝
- 道路橋梁隧道工程監(jiān)理單位抽檢記錄表
- 0.6-1kv電力電纜護(hù)套厚度參考值
- 生產(chǎn)一線IPQC制程巡檢記錄表
- 魁北克大橋事件案例分析工程倫理
- 醫(yī)院檢驗(yàn)申請單
- GB/T 29178-2012消防應(yīng)急救援裝備配備指南
- 二年級上冊美術(shù)教案-第3課 點(diǎn)線面|冀教版
- 三體系管理手冊ISO
- 國家開放大學(xué)《機(jī)電一體化系統(tǒng)實(shí)訓(xùn)作業(yè)》參考答案
- 部編人教版五年級下冊道德與法治《虎門銷煙》【獲獎(jiǎng)作品】課件
評論
0/150
提交評論