版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如圖,在⊙O中,直徑CD⊥弦AB,則下列結論中正確的是A.AC=AB B.∠C=∠BOD C.∠C=∠B D.∠A=∠B0D2.下列各組圖形中,兩個圖形不一定是相似形的是()A.兩個等邊三角形 B.有一個角是的兩個等腰三角形C.兩個矩形 D.兩個正方形3.如圖,將△ABC繞點C順時針旋轉50°得△DEC,若AC⊥DE,則∠BAC等于()A.30° B.40° C.50° D.60°4.如圖,一個半徑為r(r<1)的圓形紙片在邊長為6的正六邊形內(nèi)任意運動,則在該六邊形內(nèi),這個圓形紙片不能接觸到的部分的面積是()A.πr2 B.C. D.5.若扇形的半徑為2,圓心角為,則這個扇形的面積為()A. B. C. D.6.如圖,四邊形是邊長為5的正方形,E是上一點,,將繞著點A順時針旋轉到與重合,則()A. B. C. D.7.如圖,在四邊形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E為BC的中點,AE與BD相交于點F,若BC=4,∠CBD=30°,則AE的長為()A. B. C. D.8.若角都是銳角,以下結論:①若,則;②若,則;③若,則;④若,則.其中正確的是()A.①② B.①②③ C.①③④ D.①②③④9.下列調(diào)查方式合適的是()A.對空間實驗室“天空二號”零部件的檢查,采用抽樣調(diào)查的方式B.了解炮彈的殺傷力,采用全面調(diào)查的方式C.對中央臺“新聞聯(lián)播”收視率的調(diào)查,采用全面調(diào)查的方式D.對石家莊市食品合格情況的調(diào)查,采用抽樣調(diào)查的方式10.如圖,在?ABCD中,AC,BD相交于點O,點E是OA的中點,連接BE并延長交AD于點F,已知S△AEF=4,則下列結論:①;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正確的是()A.①②③④ B.①④ C.②③④ D.①②③11.函數(shù)y=ax2與y=﹣ax+b的圖象可能是()A. B.C. D.12.如圖,在△ABC中,∠BAC=65°,將△ABC繞點A逆時針旋轉,得到△AB'C',連接C'C.若C'C∥AB,則∠BAB'的度數(shù)為()A.65° B.50° C.80° D.130°二、填空題(每題4分,共24分)13.已知=,則的值是_______.14.布袋中裝有3個紅球和4個白球,它們除顏色外其余都相同,如果從這個布袋里隨機摸出一個球,那么所摸到的球恰好為紅球的概率是_______.15.周末小明到商場購物,付款時想從“微信”、“支付寶”、“銀行卡”三種支付方式中選一種方式進行支付,則選擇“微信”支付方式的概率為____________.16.如圖,⊙O是△ABC的外接圓,∠A=60°,BC=6,則⊙O的半徑是_____.17.已知扇形的半徑為,圓心角為,則扇形的弧長為__________.18.小王存銀行5000元,定期一年后取出3000元,剩下的錢繼續(xù)定期一年存入,如果每年的年利率不變,到期后取出2750元,則年利率為__________.三、解答題(共78分)19.(8分)已知:如圖,拋物線與軸交于點,,與軸交于點.(1)求拋物線的解析式;(2)如圖,點是線段上方拋物線上的一個動點,連結、.設的面積為.點的橫坐標為.①試求關于的函數(shù)關系式;②請說明當點運動到什么位置時,的面積有最大值?③過點作軸的垂線,交線段于點,再過點做軸交拋物線于點,連結,請問是否存在點使為等腰直角三角形?若存在,請直接寫出點的坐標;若不存在,請說明理由.20.(8分)定義:若一個四邊形能被其中一條對角線分割成兩個相似三角形,則稱這個四邊形為“友好四邊形”.(1)如圖1,在的正方形網(wǎng)格中,有一個網(wǎng)格和兩個網(wǎng)格四邊形與,其中是被分割成的“友好四邊形”的是;(2)如圖2,將繞點逆時針旋轉得到,點落在邊,過點作交的延長線于點,求證:四邊形是“友好四邊形”;(3)如圖3,在中,,,的面積為,點是的平分線上一點,連接,.若四邊形是被分割成的“友好四邊形”,求的長.21.(8分)計算:.22.(10分)如圖,四邊形OABC是矩形,ADEF是正方形,點A、D在x軸的正半軸上,點C在y軸的正半軸上,點F在AB上,點B,E在反比例函數(shù)y=的圖象上,OA=1,OC=6,試求出正方形ADEF的邊長.23.(10分)定義:有且僅有一組對角相等的凸四邊形叫做“準平行四邊形”.例如:凸四邊形中,若,則稱四邊形為準平行四邊形.(1)如圖①,是上的四個點,,延長到,使.求證:四邊形是準平行四邊形;(2)如圖②,準平行四邊形內(nèi)接于,,若的半徑為,求的長;(3)如圖③,在中,,若四邊形是準平行四邊形,且,請直接寫出長的最大值.24.(10分)計算:2cos230°+﹣sin60°.25.(12分)如圖,矩形的兩邊的長分別為3、8,是的中點,反比例函數(shù)的圖象經(jīng)過點,與交于點.(1)若點坐標為,求的值;(2)若,求反比例函數(shù)的表達式.26.某水果超市第一次花費2200元購進甲、乙兩種水果共350千克.已知甲種水果進價每千克5元,售價每千克10元;乙種水果進價每千克8元,售價每千克12元.(1)第一次購進的甲、乙兩種水果各多少千克?(2)由于第一次購進的水果很快銷售完畢,超市決定再次購進甲、乙兩種水果,它們的進價不變.若要本次購進的水果銷售完畢后獲得利潤2090元,甲種水果進貨量在第一次進貨量的基礎上增加了2m%,售價比第一次提高了m%;乙種水果的進貨量為100千克,售價不變.求m的值.
參考答案一、選擇題(每題4分,共48分)1、B【解析】先利用垂徑定理得到弧AD=弧BD,然后根據(jù)圓周角定理得到∠C=∠BOD,從而可對各選項進行判斷.【詳解】解:∵直徑CD⊥弦AB,∴弧AD=弧BD,∴∠C=∠BOD.故選B.【點睛】本題考查了垂徑定理和圓周角定理,垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條?。畧A周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.2、C【分析】根據(jù)相似圖形的定義,以及等邊三角形,等腰三角形,矩形,正方形的性質(zhì)對各選項分析判斷后利用排除法求解.【詳解】解:A、兩個等邊三角形,對應邊的比相等,角都是60°,相等,所以一定相似,故A正確;B、有一個角是100°的兩個等腰三角形,100°的角只能是頂角,夾頂角的兩邊成比例,所以一定相似,故B正確;C、兩個矩形,四個角都是直角,但四條邊不一定對應成比例,不一定相似,故C錯誤;D、兩個正方形,對應邊的比相等,角都是90°,相等,所以一定相似,故D正確.故選:C.【點睛】本題考查了相似圖形的判斷,嚴格按照定義,對應邊成比例,對應角相等進行判斷即可,另外,熟悉等腰三角形,等邊三角形,正方形的性質(zhì)對解題也很關鍵.3、B【分析】根據(jù)旋轉的性質(zhì)可求得∠ACD,根據(jù)互余關系可求∠D,根據(jù)對應角相等即可得∠BAC的大小.【詳解】解:依題意得旋轉角∠ACD=50°,由于AC⊥DE,由互余關系可得∠D=90°-50°=40°,由旋轉后對應角相等,得∠BAC=∠D=40°,故B選項正確.【點睛】本題考查了圖形的旋轉變化,要分清是順時針還是逆時針旋轉,旋轉了多少度,難度不大,但容易出錯,細心點即可.4、C【分析】當圓運動到正六邊形的角上時,圓與兩邊的切點分別為E,F,連接OE,OB,OF,根據(jù)六邊形的性質(zhì)得出,所以,再由銳角三角函數(shù)的定義求出BF的長,最后利用可得出答案.【詳解】如圖,當圓運動到正六邊形的角上時,圓與兩邊的切點分別為E,F,連接OE,OB,OF,∵多邊形是正六邊形,∴,,∴圓形紙片不能接觸到的部分的面積是故選:C.【點睛】本題主要考查正六邊形和圓,掌握正六邊形的性質(zhì)和特殊角的三角函數(shù)值是解題的關鍵.5、B【分析】直接利用扇形的面積公式計算.【詳解】這個扇形的面積:.故選:B.【點睛】本題考查了扇形面積的計算:扇形面積計算公式:設圓心角是,圓的半徑為R的扇形面積為S,則或(其中為扇形的弧長).6、D【分析】根據(jù)旋轉變換的性質(zhì)求出、,根據(jù)勾股定理計算即可.【詳解】解:由旋轉變換的性質(zhì)可知,,∴正方形的面積=四邊形的面積,∴,,∴,,∴.故選D.【點睛】本題考查的是旋轉變換的性質(zhì)、勾股定理的應用,掌握性質(zhì)的概念、旋轉變換的性質(zhì)是解題的關鍵.7、D【分析】如圖,作EH⊥AB于H,利用∠CBD的余弦可求出BD的長,利用∠ABD的余弦可求出AB的長,利用∠EBH的正弦和余弦可求出BH、HE的長,即可求出AH的長,利用勾股定理求出AE的長即可.【詳解】如圖,作EH⊥AB于H,在Rt△BDC中,BC=4,∠CBD=30°,∴BD=BC·cos30°=2,∵BD平分∠ABC,∠CBD=30°,∴∠ABD=30°,∠EBH=60°,在Rt△ABD中,∠ABD=30°,BD=2,∴AB=BD·cos30°=3,∵點E為BC中點,∴BE=EC=2,在Rt△BEH中,BH=BE·cos∠EBH=1,HE=EH·sin∠EBH=,∴AH=AB-BH=2,在Rt△AEH中,AE==,故選:D.【點睛】本題考查解直角三角形的應用,正確作出輔助線構建直角三角形并熟記三角函數(shù)的定義是解題關鍵.8、C【分析】根據(jù)銳角范圍內(nèi)、、的增減性以及互余兩銳角的正余弦函數(shù)間的關系可得.【詳解】①∵隨的增大而增大,正確;②∵隨的增大而減小,錯誤;③∵隨的增大而增大,正確;④若,根據(jù)互余兩銳角的正余弦函數(shù)間的關系可得,正確;綜上所述,①③④正確故答案為:C.【點睛】本題考查了銳角的正余弦函數(shù),掌握銳角的正余弦函數(shù)的增減性以及互余銳角的正余弦函數(shù)間的關系是解題的關鍵.9、D【分析】根據(jù)普查得到的調(diào)查結果比較準確,但所費人力、物力和時間較多,而抽樣調(diào)查得到的調(diào)查結果比較近似解答.【詳解】解:對空間實驗室“天空二號”零部件的檢查,采用全面調(diào)查的方式,A錯誤;了解炮彈的殺傷力,采用抽樣調(diào)查的方式,B錯誤;對中央臺“新聞聯(lián)播”收視率的調(diào)查,采用抽樣調(diào)查的方式,C錯誤;對石家莊市食品合格情況的調(diào)查,采用抽樣調(diào)查的方式,D正確,故選:D.【點睛】本題考查全面調(diào)查與抽樣調(diào)查,理解全面調(diào)查與抽樣調(diào)查的特點是本題的解題關鍵.10、D【詳解】∵在?ABCD中,AO=AC,∵點E是OA的中點,∴AE=CE,∵AD∥BC,∴△AFE∽△CBE,∴=,∵AD=BC,∴AF=AD,∴;故①正確;∵S△AEF=4,=()2=,∴S△BCE=36;故②正確;∵=,∴=,∴S△ABE=12,故③正確;∵BF不平行于CD,∴△AEF與△ADC只有一個角相等,∴△AEF與△ACD不一定相似,故④錯誤,故選D.11、B【解析】選項中,由圖可知:在,;在,,∴,所以A錯誤;選項中,由圖可知:在,;在,,∴,所以B正確;選項中,由圖可知:在,;在,,∴,所以C錯誤;選項中,由圖可知:在,;在,,∴,所以D錯誤.故選B.點睛:在函數(shù)與中,相同的系數(shù)是“”,因此只需根據(jù)“拋物線”的開口方向和“直線”的變化趨勢確定出兩個解析式中“”的符號,看兩者的符號是否一致即可判斷它們在同一坐標系中的圖象情況,而這與“b”的取值無關.12、B【分析】根據(jù)平行線的性質(zhì)可得,然后根據(jù)旋轉的性質(zhì)可得,,根據(jù)等邊對等角可得,利用三角形的內(nèi)角和定理求出,根據(jù)等式的基本性質(zhì)可得,從而求出結論.【詳解】解:∵∠BAC=65°,∥AB∴由旋轉的性質(zhì)可得,∴,∴,∴故選B.【點睛】此題考查的是平行線的性質(zhì)、旋轉的性質(zhì)和等腰三角形的性質(zhì),掌握平行線的性質(zhì)、旋轉的性質(zhì)和等邊對等角是解決此題的關鍵.二、填空題(每題4分,共24分)13、【分析】根據(jù)合比性質(zhì):,可得答案.【詳解】由合比性質(zhì),得,
故答案為:.【點睛】此題考查比例的性質(zhì),利用合比性質(zhì)是解題關鍵.14、【分析】由題意根據(jù)概率公式,求摸到紅球的概率,即用紅球除以小球總個數(shù)即可得出得到紅球的概率.【詳解】解:∵一個布袋里裝有3個紅球和4個白球,共7個球,∴摸出一個球摸到紅球的概率為:,故答案為:.【點睛】本題主要考查概率公式的應用,由已知求出小球總個數(shù)再利用概率公式求出是解決問題的關鍵.15、【分析】利用概率公式直接寫出答案即可.【詳解】∵共“微信”、“支付寶”、“銀行卡”三種支付方式,∴選擇“微信”支付方式的概率為,故答案為:.【點睛】本題考查概率的求法與運用,一般方法為:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率P(A)=.16、1【分析】作直徑CD,如圖,連接BD,根據(jù)圓周角定理得到∠CBD=90°,∠D=10°,然后利用含30度的直角三角形三邊的關系求出CD,從而得到⊙O的半徑.【詳解】解:作直徑CD,如圖,連接BD,∵CD為⊙O直徑,∴∠CBD=90°,∵∠D=∠A=10°,∴BD=BC=×1=1,∴CD=2BD=12,∴OC=1,即⊙O的半徑是1.故答案為1.【點睛】本題主要考查圓周角的性質(zhì),解決本題的關鍵是要熟練掌握圓周角的性質(zhì).17、【分析】直接根據(jù)弧長公式即可求解.【詳解】∵扇形的半徑為8cm,圓心角的度數(shù)為120°,
∴扇形的弧長為:.故答案為:.【點睛】本題考查了弧長的計算.解答該題需熟記弧長的公式.18、【分析】設定期一年的利率是,則存入一年后的本息和是元,取3000元后余元,再存一年則有方程,解這個方程即可求解.【詳解】解:設定期一年的利率是,根據(jù)題意得:一年時:,取出3000后剩:,同理兩年后是,即方程為,解得:,(不符合題意,故舍去),即年利率是.故答案為:10%.【點睛】此題考查了列代數(shù)式及一元二次方程的應用,是有關利率的問題,關鍵是掌握公式:本息和本金利率期數(shù)),難度一般.三、解答題(共78分)19、(1);(2)①,②當m=3時,S有最大值,③點P的坐標為(4,6)或(,).【分析】(1)由,則-12a=6,求得a即可;(2)①過點P作x軸的垂線交AB于點D,先求出AB的表達式y(tǒng)=-x+6,設點,則點D(m,-m+6),然后再表示即可;②由在中,<0,故S有最大值;③△PDE為等腰直角三角形,則PE=PD,然后再確定函數(shù)的對稱軸、E點的橫坐標,進一步可得|PE|=2m-4,即求得m即可確定P的坐標.【詳解】解:(1)由拋物線的表達式可化為,則-12a=6,解得:a=,故拋物線的表達式為:;(2)①過點P作x軸的垂線交AB于點D,由點A(0,6)、B的坐標可得直線AB的表達式為:y=-x+6,設點,則點D(m,-m+6),∴;②∵,<0∴當m=3時,S有最大值;③∵△PDE為等腰直角三角形,∴PE=PD,∵點,函數(shù)的對稱軸為:x=2,則點E的橫坐標為:4-m,則|PE|=2m-4,即,解得:m=4或-2或或(舍去-2和)當m=4時,=6;當m=時,=.故點P的坐標為(4,6)或(,).【點睛】本題屬于二次函數(shù)綜合應用題,主要考查了一次函數(shù)、等腰三角形的性質(zhì)、圖形的面積計算等知識點,掌握并靈活應用所學知識是解答本題的關鍵.20、(1)四邊形;(2)詳見解析;(3)【分析】(1)根據(jù)三角形相似的判定定理,得?ABC~?EAC,進而即可得到答案;(2)由旋轉的性質(zhì)得,,,結合,得,進而即可得到結論;(3)過點作于,得,根據(jù)三角形的面積得,結合∽,即可得到答案.【詳解】(1)由題意得:,∴,∴?ABC~?EAC,∴被分割成的“友好四邊形”的是:四邊形,故答案是:四邊形;(2)根據(jù)旋轉的性質(zhì)得,,,∵,∴,∴,∴∽,∴四邊形是“友好四邊形”;(3)過點作于,∴在中,,∵的面積為,∴,∴,∵四邊形是被分割成的“友好四邊形”,且,∴∽,∴,∴,∴.【點睛】本題主要考查相似三角形的判定和性質(zhì)定理以及三角函數(shù)的定義,掌握三角形相似的判定和性質(zhì),是解題的關鍵.21、2﹣1【分析】首先計算乘方、開方、特殊三角函數(shù)值,再計算乘法,最后實數(shù)的加減法即可.【詳解】.【點睛】本題考查了冪的乘方、二次根式、特殊三角函數(shù)值等知識點,熟記各運算法則和特殊三角函數(shù)值是解題關鍵.22、1.【分析】根據(jù)OA、OC的長度結合矩形的性質(zhì)即可得出點B的坐標,由點B的坐標利用反比例函數(shù)圖象上點的坐標特征即可求出k值,設正方形ADEF的邊長為a,由此即可表示出點E的坐標,再根據(jù)反比例函數(shù)圖象上點的坐標特征即可得出關于a的一元二次方程,解之即可得出結論.【詳解】解:∵OA=1,OC=2,四邊形OABC是矩形,
∴點B的坐標為(1,2),
∵反比例函數(shù)y=的圖象過點B,
∴k=1×2=2.
設正方形ADEF的邊長為a(a>0),
則點E的坐標為(1+a,a),
∵反比例函數(shù)y=的圖象過點E,
∴a(1+a)=2,
解得:a=1或a=-3(舍去),
∴正方形ADEF的邊長為1.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征、矩形的性質(zhì)以及正方形的性質(zhì),根據(jù)反比例函數(shù)圖象上點的坐標特征得出關于a的一元二次方程是解題的關鍵.23、(1)見解析;(2);(3)【分析】(1)先根據(jù)同弧所對的圓周角相等證明三角形ABC為等邊三角形,得到∠ACB=60°,再求出∠APB=60°,根據(jù)AQ=AP判定△APQ為等邊三角形,∠AQP=∠QAP=60°,故∠ACB=∠AQP,可判斷∠QAC>120°,∠QBC<120°,故∠QAC≠∠QBC,可證四邊形是準平行四邊形;(2)根據(jù)已知條件可判斷∠ABC≠∠ADC,則可得∠BAD=∠BCD=90°,連接BD,則BD為直徑為10,根據(jù)BC=CD得△BCD為等腰直角三角形,則∠BAC=∠BDC=45°,在直角三角形BCD中利用勾股定理或三角函數(shù)求出BC的長,過B點作BE⊥AC,分別在直角三角形ABE和△BEC中,利用三角函數(shù)和勾股定理求出AE、CE的長,即可求出AC的長.(3)根據(jù)已知條件可得:∠ADC=∠ABC=60°,延長BC到E點,使BE=BA,可得三角形ABE為等邊三角形,∠E=60°,過A、E、C三點作圓o,則AE為直徑,點D在點C另一側的弧AE上(點A、點E除外),連接BO交弧AE于D點,則此時BD的長度最大,根據(jù)已知條件求出BO、OD的長度,即可求解.【詳解】(1)∵∴∠ABC=∠BAC=60°∴△ABC為等邊三角形,∠ACB=60°∵∠APQ=180°-∠APC-∠CPB=60°又AP=AQ∴△APQ為等邊三角形∴∠AQP=∠QAP=60°∴∠ACB=∠AQP∵∠QAC=∠QAP+∠PAB+∠BAC=120°+∠PAB>120°故∠QBC=360°-∠AQP-∠ACB-∠QAC<120°∴∠QAC≠∠QBC∴四邊形是準平行四邊形(2)連接BD,過B點作BE⊥AC于E點∵準平行四邊形內(nèi)接于,∴∠ABC≠∠ADC,∠BAD=∠BCD∵∠BAD+∠BCD=180°∴∠BAD=∠BCD=90°∴BD為的直徑∵的半徑為5∴BD=10∵BC=CD,∠BCD=90°∴∠CBD=∠BDC=45°∴BC=BDsin∠BDC=10,∠BAC=∠BDC=45°∵BE⊥AC∴∠BEA=∠BEC=90°∴AE=ABsin∠BAC=6∵∠ABE=∠BAE=45°∴BE=AE=在直角三角形BEC中,EC=∴AC=AE+EC=(3)在中,∴∠ABC=60°∵四邊形是準平行四邊形,且∴∠ADC=∠ABC=60°延長BC到E點,使BE=BA,可得三角形ABE為等邊三角形,∠E=60°,過A、E、C三點作圓o,因為∠ACE=90°,則AE為直徑,點D在點C另一側的弧AE上(點A、點E除外),此時,∠ADC=∠AEC=60°,連接BO交弧AE于D點,則此時BD的長度最大.在等邊三角形ABE中,∠ACB=90°,BC=2∴AE=BE=2BC=4∴OE=OA=OD=2∴BO⊥AE∴BO=BEsin∠E=4∴BD=BO+0D=2+即BD長的最大值為2+【點睛】本題考查的是新概念及圓的相關知識,理解新概念的含義、掌握圓的性質(zhì)是解答的關鍵,本題的難點在第(3)小問
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2025學年年七年級數(shù)學人教版下冊專題整合復習卷28.1~28.2 階段性復習(含答案)-
- 持續(xù)反饋環(huán)節(jié)在生產(chǎn)計劃中的必要性
- 巖石礦物標準物質(zhì)相關行業(yè)投資方案
- 水泥運輸委托協(xié)議三篇
- 冷箱行業(yè)相關投資計劃提議
- 工程塑料尼龍系列相關行業(yè)投資規(guī)劃報告范本
- 再生資源倉庫管理方案計劃
- 跨部門合作的工作流程計劃
- 睡眠健康借款合同三篇
- 【培訓課件】績效考評和員工能力發(fā)展項目建議書
- 光伏電站安全培訓
- 建筑工程制圖與識圖智慧樹知到期末考試答案2024年
- 會議運營與管理(雙語)智慧樹知到期末考試答案2024年
- 24春國家開放大學《鄉(xiāng)鎮(zhèn)行政管理》作業(yè)1-5參考答案
- 2024年一線及新一線城市職場人心理健康洞察報告
- 日本核廢水事件始末課件(圖文)
- 銀行投訴處理技巧課件
- 外語慕課mooc西方文化之窗(廣外)課后作業(yè)期末考試答案
- 2023-2024學年廣東省廣州市白云區(qū)九年級(上)期末數(shù)學試卷(含解析)
- 益生菌項目計劃書
- 山東省煙臺市2023-2024學年高二上學期期末考試英語試題(解析版)
評論
0/150
提交評論