![新高考數(shù)學(xué)二輪復(fù)習(xí)精講精練專題16 函數(shù)與導(dǎo)數(shù)常見(jiàn)經(jīng)典壓軸小題全歸類(原卷版)_第1頁(yè)](http://file4.renrendoc.com/view7/M02/39/21/wKhkGWbIFyCAV13wAAG6BTnEvjY731.jpg)
![新高考數(shù)學(xué)二輪復(fù)習(xí)精講精練專題16 函數(shù)與導(dǎo)數(shù)常見(jiàn)經(jīng)典壓軸小題全歸類(原卷版)_第2頁(yè)](http://file4.renrendoc.com/view7/M02/39/21/wKhkGWbIFyCAV13wAAG6BTnEvjY7312.jpg)
![新高考數(shù)學(xué)二輪復(fù)習(xí)精講精練專題16 函數(shù)與導(dǎo)數(shù)常見(jiàn)經(jīng)典壓軸小題全歸類(原卷版)_第3頁(yè)](http://file4.renrendoc.com/view7/M02/39/21/wKhkGWbIFyCAV13wAAG6BTnEvjY7313.jpg)
![新高考數(shù)學(xué)二輪復(fù)習(xí)精講精練專題16 函數(shù)與導(dǎo)數(shù)常見(jiàn)經(jīng)典壓軸小題全歸類(原卷版)_第4頁(yè)](http://file4.renrendoc.com/view7/M02/39/21/wKhkGWbIFyCAV13wAAG6BTnEvjY7314.jpg)
![新高考數(shù)學(xué)二輪復(fù)習(xí)精講精練專題16 函數(shù)與導(dǎo)數(shù)常見(jiàn)經(jīng)典壓軸小題全歸類(原卷版)_第5頁(yè)](http://file4.renrendoc.com/view7/M02/39/21/wKhkGWbIFyCAV13wAAG6BTnEvjY7315.jpg)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
專題16函數(shù)與導(dǎo)數(shù)常見(jiàn)經(jīng)典壓軸小題全歸類【命題規(guī)律】1、導(dǎo)數(shù)的計(jì)算和幾何意義是高考命題的熱點(diǎn),多以選擇題、填空題形式考查,難度較小.2、應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值、最值多在選擇題、填空題靠后的位置考查,難度中等偏上,屬綜合性問(wèn)題.【核心考點(diǎn)目錄】核心考點(diǎn)一:函數(shù)零點(diǎn)問(wèn)題之分段分析法模型核心考點(diǎn)二:函數(shù)嵌套問(wèn)題核心考點(diǎn)三:函數(shù)整數(shù)解問(wèn)題核心考點(diǎn)四:唯一零點(diǎn)求值問(wèn)題核心考點(diǎn)五:等高線問(wèn)題核心考點(diǎn)六:分段函數(shù)零點(diǎn)問(wèn)題核心考點(diǎn)七:函數(shù)對(duì)稱問(wèn)題核心考點(diǎn)八:零點(diǎn)嵌套問(wèn)題核心考點(diǎn)九:函數(shù)零點(diǎn)問(wèn)題之三變量問(wèn)題核心考點(diǎn)十:倍值函數(shù)核心考點(diǎn)十一:函數(shù)不動(dòng)點(diǎn)問(wèn)題核心考點(diǎn)十二:函數(shù)的旋轉(zhuǎn)問(wèn)題核心考點(diǎn)十三:構(gòu)造函數(shù)解不等式核心考點(diǎn)十四:導(dǎo)數(shù)中的距離問(wèn)題核心考點(diǎn)十五:導(dǎo)數(shù)的同構(gòu)思想核心考點(diǎn)十六:不等式恒成立之分離參數(shù)、分離函數(shù)、放縮法核心考點(diǎn)十七:三次函數(shù)問(wèn)題核心考點(diǎn)十八:切線問(wèn)題核心考點(diǎn)十九:任意存在性問(wèn)題核心考點(diǎn)二十:雙參數(shù)最值問(wèn)題核心考點(diǎn)二十一:切線斜率與割線斜率核心考點(diǎn)二十二:最大值的最小值問(wèn)題(平口單峰函數(shù)、鉛錘距離)核心考點(diǎn)二十三:兩邊夾問(wèn)題和零點(diǎn)相同問(wèn)題核心考點(diǎn)二十四:函數(shù)的伸縮變換問(wèn)題【真題回歸】1.(2022·全國(guó)·統(tǒng)考高考真題)當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0取得最大值SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.12.(2022·全國(guó)·統(tǒng)考高考真題)函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0的最小值、最大值分別為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(多選題)(2022·全國(guó)·統(tǒng)考高考真題)已知函數(shù)SKIPIF1<0,則(
)A.SKIPIF1<0有兩個(gè)極值點(diǎn) B.SKIPIF1<0有三個(gè)零點(diǎn)C.點(diǎn)SKIPIF1<0是曲線SKIPIF1<0的對(duì)稱中心 D.直線SKIPIF1<0是曲線SKIPIF1<0的切線4.(2022·天津·統(tǒng)考高考真題)設(shè)SKIPIF1<0,對(duì)任意實(shí)數(shù)x,記SKIPIF1<0.若SKIPIF1<0至少有3個(gè)零點(diǎn),則實(shí)數(shù)SKIPIF1<0的取值范圍為_(kāi)_____.5.(2022·全國(guó)·統(tǒng)考高考真題)已知SKIPIF1<0和SKIPIF1<0分別是函數(shù)SKIPIF1<0(SKIPIF1<0且SKIPIF1<0)的極小值點(diǎn)和極大值點(diǎn).若SKIPIF1<0,則a的取值范圍是____________.6.(2022·全國(guó)·統(tǒng)考高考真題)若曲線SKIPIF1<0有兩條過(guò)坐標(biāo)原點(diǎn)的切線,則a的取值范圍是________________.7.(2022·浙江·統(tǒng)考高考真題)已知函數(shù)SKIPIF1<0則SKIPIF1<0________;若當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0的最大值是_________.8.(2022·全國(guó)·統(tǒng)考高考真題)曲線SKIPIF1<0過(guò)坐標(biāo)原點(diǎn)的兩條切線的方程為_(kāi)___________,____________.9.(2022·北京·統(tǒng)考高考真題)設(shè)函數(shù)SKIPIF1<0若SKIPIF1<0存在最小值,則a的一個(gè)取值為_(kāi)_______;a的最大值為_(kāi)__________.【方法技巧與總結(jié)】1、求分段函數(shù)的函數(shù)值,要先確定要求值的自變量屬于哪一段區(qū)間,然后代入該段的解析式求值,當(dāng)出現(xiàn)SKIPIF1<0的形式時(shí),應(yīng)從內(nèi)到外依次求值;當(dāng)給出函數(shù)值求自變量的值時(shí),先假設(shè)所求的值在分段函數(shù)定義區(qū)間的各段上,然后求出相應(yīng)自變量的值,切記要代入檢驗(yàn),看所求的自變量的值是否滿足相應(yīng)段自變量的取值范圍.2、含有抽象函數(shù)的分段函數(shù),在處理時(shí)首先要明確目標(biāo),即讓自變量向有具體解析式的部分靠攏,其次要理解抽象函數(shù)的含義和作用(或者對(duì)函數(shù)圖象的影響).3、含分段函數(shù)的不等式在處理上通常有兩種方法:一種是利用代數(shù)手段,通過(guò)對(duì)SKIPIF1<0進(jìn)行分類討論將不等式轉(zhuǎn)變?yōu)榫唧w的不等式求解;另一種是通過(guò)作出分段函數(shù)的圖象,數(shù)形結(jié)合,利用圖象的特點(diǎn)解不等式.4、分段函數(shù)零點(diǎn)的求解與判斷方法:(1)直接法:直接根據(jù)題設(shè)條件構(gòu)造關(guān)于參數(shù)的不等式,再通過(guò)解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成球函數(shù)值域的問(wèn)題加以解決;(3)數(shù)形結(jié)合法:先將解析式變形,在同一平面直角坐標(biāo)系中,畫(huà)出函數(shù)的圖象,然后數(shù)形結(jié)合求解.5、動(dòng)態(tài)二次函數(shù)中靜態(tài)的值:解決這類問(wèn)題主要考慮二次函數(shù)的有關(guān)性質(zhì)及式子變形,注意二次函數(shù)的系數(shù)、圖象的開(kāi)口、對(duì)稱軸是否存在不變的性質(zhì),二次函數(shù)的圖象是否過(guò)定點(diǎn),從而簡(jiǎn)化解題.6、動(dòng)態(tài)二次函數(shù)零點(diǎn)個(gè)數(shù)和分布問(wèn)題:通常轉(zhuǎn)化為相應(yīng)二次函數(shù)的圖象與SKIPIF1<0軸交點(diǎn)的個(gè)數(shù)問(wèn)題,結(jié)合二次函數(shù)的圖象,通過(guò)對(duì)稱軸,根的判別式,相應(yīng)區(qū)間端點(diǎn)函數(shù)值等來(lái)考慮.7、求二次函數(shù)最值問(wèn)題,應(yīng)結(jié)合二次函數(shù)的圖象求解,有三種常見(jiàn)類型:(1)對(duì)稱軸變動(dòng),區(qū)間固定;(2)對(duì)稱軸固定,區(qū)間變動(dòng);(3)對(duì)稱軸變動(dòng),區(qū)間也變動(dòng).這時(shí)要討論對(duì)稱軸何時(shí)在區(qū)間之內(nèi),何時(shí)在區(qū)間之外.討論的目的是確定對(duì)稱軸和區(qū)間的關(guān)系,明確函數(shù)的單調(diào)情況,從而確定函數(shù)的最值.8、由于三次函數(shù)的導(dǎo)函數(shù)為我們最熟悉的二次函數(shù),所以基本的研究思路是:借助導(dǎo)函數(shù)的圖象來(lái)研究原函數(shù)的圖象.如借助導(dǎo)函數(shù)的正負(fù)研究原函數(shù)的單調(diào)性;借助導(dǎo)函數(shù)的(變號(hào))零點(diǎn)研究原函數(shù)的極值點(diǎn)(最值點(diǎn));綜合借助導(dǎo)函數(shù)的圖象畫(huà)出原函數(shù)的圖象并研究原函數(shù)的零點(diǎn)…具體來(lái)說(shuō),對(duì)于三次函數(shù)SKIPIF1<0,其導(dǎo)函數(shù)為SKIPIF1<0,根的判別式SKIPIF1<0.SKIPIF1<0SKIPIF1<0判別式SKIPIF1<0SKIPIF1<0SKIPIF1<0圖象SKIPIF1<0單調(diào)性增區(qū)間:SKIPIF1<0,SKIPIF1<0;減區(qū)間:SKIPIF1<0增區(qū)間:SKIPIF1<0增區(qū)間:SKIPIF1<0圖象(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立,三次函數(shù)SKIPIF1<0在SKIPIF1<0上為增函數(shù),沒(méi)有極值點(diǎn),有且只有一個(gè)零點(diǎn);(2)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0有兩根SKIPIF1<0,SKIPIF1<0,不妨設(shè)SKIPIF1<0,則SKIPIF1<0,可得三次函數(shù)SKIPIF1<0在SKIPIF1<0,SKIPIF1<0上為增函數(shù),在SKIPIF1<0上為減函數(shù),則SKIPIF1<0,SKIPIF1<0分別為三次函數(shù)SKIPIF1<0的兩個(gè)不相等的極值點(diǎn),那么:①若SKIPIF1<0,則SKIPIF1<0有且只有SKIPIF1<0個(gè)零點(diǎn);②若SKIPIF1<0,則SKIPIF1<0有SKIPIF1<0個(gè)零點(diǎn);③若SKIPIF1<0,則SKIPIF1<0有SKIPIF1<0個(gè)零點(diǎn).特別地,若三次函數(shù)SKIPIF1<0存在極值點(diǎn)SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0地解析式為SKIPIF1<0.同理,對(duì)于三次函數(shù)SKIPIF1<0,其性質(zhì)也可類比得到.9、由于三次函數(shù)SKIPIF1<0的導(dǎo)函數(shù)SKIPIF1<0為二次函數(shù),其圖象變化規(guī)律具有對(duì)稱性,所以三次函數(shù)圖象也應(yīng)當(dāng)具有對(duì)稱性,其圖象對(duì)稱中心應(yīng)當(dāng)為點(diǎn)SKIPIF1<0,此結(jié)論可以由對(duì)稱性的定義加以證明.事實(shí)上,該圖象對(duì)稱中心的橫坐標(biāo)正是三次函數(shù)導(dǎo)函數(shù)的極值點(diǎn).10、對(duì)于三次函數(shù)圖象的切線問(wèn)題,和一般函數(shù)的研究方法相同.導(dǎo)數(shù)的幾何意義就是求圖象在該店處切線的斜率,利用導(dǎo)數(shù)研究函數(shù)的切線問(wèn)題,要區(qū)分“在”與“過(guò)”的不同,如果是過(guò)某一點(diǎn),一定要設(shè)切點(diǎn)坐標(biāo),然后根據(jù)具體的條件得到方程,然后解出參數(shù)即可.11、恒成立(或存在性)問(wèn)題常常運(yùn)用分離參數(shù)法,轉(zhuǎn)化為求具體函數(shù)的最值問(wèn)題.12、如果無(wú)法分離參數(shù),可以考慮對(duì)參數(shù)或自變量進(jìn)行分類討論,利用函數(shù)性質(zhì)求解,常見(jiàn)的是利用函數(shù)單調(diào)性求解函數(shù)的最大、最小值.13、當(dāng)不能用分離參數(shù)法或借助于分類討論解決問(wèn)題時(shí),還可以考慮利用函數(shù)圖象來(lái)求解,即利用數(shù)形結(jié)合思想解決恒成立(或存在性)問(wèn)題,此時(shí)應(yīng)先構(gòu)造函數(shù),作出符合已知條件的圖形,再考慮在給定區(qū)間上函數(shù)圖象之間的關(guān)系,得出答案或列出條件,求出參數(shù)的范圍.14、兩類零點(diǎn)問(wèn)題的不同處理方法利用零點(diǎn)存在性定理的條件為函數(shù)圖象在區(qū)間[a,b]上是連續(xù)不斷的曲線,且SKIPIF1<0..①直接法:判斷-一個(gè)零點(diǎn)時(shí),若函數(shù)為單調(diào)函數(shù),則只需取值證明SKIPIF1<0.②分類討論法:判斷幾個(gè)零點(diǎn)時(shí),需要先結(jié)合單調(diào)性,確定分類討論的標(biāo)準(zhǔn),再利用零點(diǎn)存在性定理,在每個(gè)單調(diào)區(qū)間內(nèi)取值證明SKIPIF1<0.15、利用導(dǎo)數(shù)研究方程根(函數(shù)零點(diǎn))的技巧(1)研究方程根的情況,可以通過(guò)導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最大值、最小值、變化趨勢(shì)等.(2)根據(jù)題目要求,畫(huà)出函數(shù)圖象的走勢(shì)規(guī)律,標(biāo)明函數(shù)極(最)值的位置.(3)利用數(shù)形結(jié)合的思想去分析問(wèn)題,可以使問(wèn)題的求解有一個(gè)清晰、直觀的整體展現(xiàn).16、已知函數(shù)零點(diǎn)個(gè)數(shù)求參數(shù)的常用方法(1)分離參數(shù)法:首先分離出參數(shù),然后利用求導(dǎo)的方法求出構(gòu)造的新函數(shù)的最值,根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等式,再通過(guò)解不等式確定參數(shù)范圍.(2)分類討論法:結(jié)合單調(diào)性,先確定參數(shù)分類的標(biāo)準(zhǔn),在每個(gè)小范圍內(nèi)研究零點(diǎn)的個(gè)數(shù)是否符合題意,將滿足題意的參數(shù)的各小范圍并在一起,即為所求參數(shù)范圍.【核心考點(diǎn)】核心考點(diǎn)一:函數(shù)零點(diǎn)問(wèn)題之分段分析法模型【典型例題】例1.(2023·浙江奉化·高二期末)若函數(shù)SKIPIF1<0至少存在一個(gè)零點(diǎn),則SKIPIF1<0的取值范圍為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例2.(2023·天津·耀華中學(xué)高二期中)設(shè)函數(shù)SKIPIF1<0,記SKIPIF1<0,若函數(shù)SKIPIF1<0至少存在一個(gè)零點(diǎn),則實(shí)數(shù)SKIPIF1<0的取值范圍是A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0例3.(2023·湖南·長(zhǎng)沙一中高三月考(文))設(shè)函數(shù)SKIPIF1<0(其中SKIPIF1<0為自然對(duì)數(shù)的底數(shù)),若函數(shù)SKIPIF1<0至少存在一個(gè)零點(diǎn),則實(shí)數(shù)SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0核心考點(diǎn)二:函數(shù)嵌套問(wèn)題【典型例題】例4.(2023·全國(guó)·高三專題練習(xí))已知函數(shù)SKIPIF1<0,設(shè)關(guān)于SKIPIF1<0的方程SKIPIF1<0有SKIPIF1<0個(gè)不同的實(shí)數(shù)解,則SKIPIF1<0的所有可能的值為A.SKIPIF1<0 B.SKIPIF1<0或SKIPIF1<0 C.SKIPIF1<0或SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<0或SKIPIF1<0例5.(2023·全國(guó)·高三專題練習(xí)(文))已知函數(shù)SKIPIF1<0,SKIPIF1<0若關(guān)于x的方程SKIPIF1<0有四個(gè)不同的解,則實(shí)數(shù)m的取值集合為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例6.(2023·河南·高三月考(文))已知函數(shù)SKIPIF1<0,若關(guān)于SKIPIF1<0的方程SKIPIF1<0有且僅有三個(gè)不同的實(shí)數(shù)解,則實(shí)數(shù)SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0核心考點(diǎn)三:函數(shù)整數(shù)解問(wèn)題【典型例題】例7.(2023·福建寧德·高三)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立,則整數(shù)SKIPIF1<0的最大值為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例8.(2023·江蘇·蘇州大學(xué)附屬中學(xué)高三月考)已知SKIPIF1<0,關(guān)于x的一元二次不等式SKIPIF1<0的解集中有且僅有3個(gè)整數(shù),則所有符合條件的a的值之和是()A.13 B.21 C.26 D.30例9.(2023·江蘇宿遷·高一月考)用符號(hào)[x]表示不超過(guò)x的最大整數(shù)(稱為x的整數(shù)部分),如[﹣1.2]=﹣2,[0.2]=0,[1]=1,設(shè)函數(shù)f(x)=(1﹣lnx)(lnx﹣ax)有三個(gè)不同的零點(diǎn)x1,x2,x3,若[x1]+[x2]+[x3]=6,則實(shí)數(shù)a的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0核心考點(diǎn)四:唯一零點(diǎn)求值問(wèn)題【典型例題】例10.(2023·安徽蚌埠·模擬預(yù)測(cè)(理))已知函數(shù)SKIPIF1<0有唯一零點(diǎn),則SKIPIF1<0()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例11.(2023·遼寧沈陽(yáng)·模擬預(yù)測(cè))已知函數(shù)SKIPIF1<0分別是定義在SKIPIF1<0上的偶函數(shù)和奇函數(shù),且SKIPIF1<0,若函數(shù)SKIPIF1<0有唯一零點(diǎn),則正實(shí)數(shù)SKIPIF1<0的值為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例12.(2023·新疆·莎車縣第一中學(xué)高三期中)已知函數(shù)SKIPIF1<0,SKIPIF1<0分別是定義在SKIPIF1<0上的偶函數(shù)和奇函數(shù),且SKIPIF1<0,若函數(shù)SKIPIF1<0有唯一零點(diǎn),則實(shí)數(shù)SKIPIF1<0的值為A.SKIPIF1<0或SKIPIF1<0 B.1或SKIPIF1<0 C.SKIPIF1<0或2 D.SKIPIF1<0或1核心考點(diǎn)五:等高線問(wèn)題【典型例題】例13.(2023·陜西·千陽(yáng)縣中學(xué)模擬預(yù)測(cè)(理))已知函數(shù)SKIPIF1<0,若方程SKIPIF1<0SKIPIF1<0的SKIPIF1<0個(gè)不同實(shí)根從小到大依次為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,有以下三個(gè)結(jié)論:①SKIPIF1<0且SKIPIF1<0;②當(dāng)SKIPIF1<0時(shí),SKIPIF1<0且SKIPIF1<0;③SKIPIF1<0.其中正確的結(jié)論個(gè)數(shù)為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例14.(2023·江蘇省天一中學(xué)高三月考)已知函數(shù)SKIPIF1<0,若方程SKIPIF1<0有3個(gè)不同的實(shí)根SKIPIF1<0,則SKIPIF1<0的取值范圍為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例15.(2023·浙江·高一單元測(cè)試)已知函數(shù)SKIPIF1<0,其中SKIPIF1<0,若方程SKIPIF1<0有四個(gè)不同的實(shí)根SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,則SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0核心考點(diǎn)六:分段函數(shù)零點(diǎn)問(wèn)題【典型例題】例16.(2023·山東青島·高三期末)已知函數(shù)SKIPIF1<0,若方程SKIPIF1<0有4個(gè)不相同的解,則實(shí)數(shù)m的取值范圍為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例17.(2023·全國(guó)·高三專題練習(xí))已知函數(shù)SKIPIF1<0,SKIPIF1<0,若函數(shù)SKIPIF1<0有兩個(gè)零點(diǎn),則SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例18.(2023·江蘇·高三專題練習(xí))已知函數(shù)SKIPIF1<0,函數(shù)SKIPIF1<0,若SKIPIF1<0有兩個(gè)零點(diǎn),則m的取值范圍是().A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0核心考點(diǎn)七:函數(shù)對(duì)稱問(wèn)題【典型例題】例19.(2023·安徽省滁州中學(xué)高三月考(文))已知函數(shù)SKIPIF1<0的圖象上有且僅有四個(gè)不同的點(diǎn)關(guān)于直線SKIPIF1<0的對(duì)稱點(diǎn)在SKIPIF1<0的圖象上,則實(shí)數(shù)SKIPIF1<0的取值范圍是A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例20.(2023·全國(guó)·高一課時(shí)練習(xí))若直角坐標(biāo)平面內(nèi)的兩點(diǎn)P,Q滿足條件:①P,Q都在函數(shù)SKIPIF1<0的圖象上;②P,Q關(guān)于原點(diǎn)對(duì)稱,則稱點(diǎn)對(duì)SKIPIF1<0是函數(shù)SKIPIF1<0的一個(gè)“友好點(diǎn)對(duì)”(注:點(diǎn)對(duì)SKIPIF1<0與SKIPIF1<0看作同一個(gè)“友好點(diǎn)對(duì)”).已知函數(shù)SKIPIF1<0,則此函數(shù)的“友好點(diǎn)對(duì)”有()A.0個(gè) B.1個(gè) C.2個(gè) D.3個(gè)例21.(2023·福建·廈門(mén)一中高一競(jìng)賽)若函數(shù)y=f(x)圖象上存在不同的兩點(diǎn)A,B關(guān)于y軸對(duì)稱,則稱點(diǎn)對(duì)[A,B]是函數(shù)y=f(x)的一對(duì)“黃金點(diǎn)對(duì)”(注:點(diǎn)對(duì)[A,B]與[B,A]可看作同一對(duì)“黃金點(diǎn)對(duì)”)已知函數(shù)SKIPIF1<0,則此函數(shù)的“黃金點(diǎn)對(duì)”有()A.0對(duì) B.1對(duì) C.2對(duì) D.3對(duì)核心考點(diǎn)八:零點(diǎn)嵌套問(wèn)題【典型例題】例22.(2023·湖北武漢·高三月考)已知函數(shù)SKIPIF1<0有三個(gè)不同的零點(diǎn)SKIPIF1<0.其中SKIPIF1<0,則SKIPIF1<0的值為()A.1 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例23.(2023·全國(guó)·模擬預(yù)測(cè)(理))已知函數(shù)SKIPIF1<0有三個(gè)不同的零點(diǎn)SKIPIF1<0(其中SKIPIF1<0),則SKIPIF1<0的值為A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例24.(2023·浙江省杭州第二中學(xué)高三開(kāi)學(xué)考試)已知函數(shù)SKIPIF1<0,有三個(gè)不同的零點(diǎn),(其中SKIPIF1<0),則SKIPIF1<0的值為A.SKIPIF1<0 B.SKIPIF1<0 C.-1 D.1核心考點(diǎn)九:函數(shù)零點(diǎn)問(wèn)題之三變量問(wèn)題【典型例題】例25.(2023·全國(guó)·高三)若存在兩個(gè)正實(shí)數(shù)SKIPIF1<0、SKIPIF1<0,使得等式SKIPIF1<0成立,其中SKIPIF1<0為自然對(duì)數(shù)的底數(shù),則實(shí)數(shù)SKIPIF1<0的取值范圍是().A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0例26.(2023·山東棗莊·高二期末)對(duì)于任意的實(shí)數(shù)SKIPIF1<0,總存在三個(gè)不同的實(shí)數(shù)SKIPIF1<0,使得SKIPIF1<0成立,其中SKIPIF1<0為自然對(duì)數(shù)的底數(shù),則實(shí)數(shù)SKIPIF1<0的取值范圍是A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例27.(2023·四川省新津中學(xué)高三月考(理))若存在兩個(gè)正實(shí)數(shù)SKIPIF1<0,使得等式SKIPIF1<0成立,其中SKIPIF1<0為自然對(duì)數(shù)的底數(shù),則實(shí)數(shù)SKIPIF1<0的取值范圍為A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0核心考點(diǎn)十:倍值函數(shù)【典型例題】例28.(河南省鄭州市第一中學(xué)2022-2023學(xué)年高三上學(xué)期期中考試數(shù)學(xué)(理)試題)對(duì)于函數(shù)SKIPIF1<0,若存在區(qū)間SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)的值域?yàn)镾KIPIF1<0,則稱SKIPIF1<0為SKIPIF1<0倍值函數(shù).若SKIPIF1<0是SKIPIF1<0倍值函數(shù),則實(shí)數(shù)SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例29.(2023·四川·內(nèi)江市教育科學(xué)研究所高二期末(文))對(duì)于函數(shù)SKIPIF1<0,若存在區(qū)間SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的值域?yàn)镾KIPIF1<0,則稱SKIPIF1<0為SKIPIF1<0倍值函數(shù).若SKIPIF1<0是SKIPIF1<0倍值函數(shù),則SKIPIF1<0的取值范圍為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例30.(2023·吉林·長(zhǎng)春十一高高二期中(理))對(duì)于函數(shù)SKIPIF1<0,若存在區(qū)間SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的值域?yàn)镾KIPIF1<0,則稱SKIPIF1<0為SKIPIF1<0倍值函數(shù).若SKIPIF1<0是SKIPIF1<0倍值函數(shù),則SKIPIF1<0的取值范圍為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0核心考點(diǎn)十一:函數(shù)不動(dòng)點(diǎn)問(wèn)題【典型例題】例31.(2023·廣東海珠·高三期末)設(shè)函數(shù)SKIPIF1<0(SKIPIF1<0為自然對(duì)數(shù)的底數(shù)),若曲線SKIPIF1<0上存在點(diǎn)SKIPIF1<0使得SKIPIF1<0,則SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例32.(2023·山西省榆社中學(xué)高三月考(理))若存在一個(gè)實(shí)數(shù)t,使得SKIPIF1<0成立,則稱t為函數(shù)SKIPIF1<0的一個(gè)不動(dòng)點(diǎn).設(shè)函數(shù)SKIPIF1<0(SKIPIF1<0,e為自然對(duì)數(shù)的底數(shù)),定義在R上的連續(xù)函數(shù)SKIPIF1<0滿足SKIPIF1<0,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.若存在SKIPIF1<0,且SKIPIF1<0為函數(shù)SKIPIF1<0的一個(gè)不動(dòng)點(diǎn),則實(shí)數(shù)a的取值范圍為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例33.(2023·四川自貢·高二期末(文))設(shè)函數(shù)SKIPIF1<0,若存在SKIPIF1<0(SKIPIF1<0為自然對(duì)數(shù)的底數(shù)),使得SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0核心考點(diǎn)十二:函數(shù)的旋轉(zhuǎn)問(wèn)題【典型例題】例34.(2023·上海市建平中學(xué)高三期末)雙曲線SKIPIF1<0繞坐標(biāo)原點(diǎn)O旋轉(zhuǎn)適當(dāng)角度可以成為函數(shù)f(x)的圖象,關(guān)于此函數(shù)f(x)有如下四個(gè)命題,其中真命題的個(gè)數(shù)為()①f(x)是奇函數(shù);②f(x)的圖象過(guò)點(diǎn)SKIPIF1<0或SKIPIF1<0;③f(x)的值域是SKIPIF1<0;④函數(shù)y=f(x)-x有兩個(gè)零點(diǎn).A.4個(gè) B.3個(gè) C.2個(gè) D.1個(gè)例35.(2023·山東青島·高三開(kāi)學(xué)考試)將函數(shù)SKIPIF1<0的圖象繞點(diǎn)SKIPIF1<0逆時(shí)針旋轉(zhuǎn)SKIPIF1<0,得到曲線SKIPIF1<0,對(duì)于每一個(gè)旋轉(zhuǎn)角SKIPIF1<0,曲線SKIPIF1<0都是一個(gè)函數(shù)的圖象,則SKIPIF1<0最大時(shí)的正切值為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例36.(2023·浙江·高三期末)將函數(shù)SKIPIF1<0的圖像繞著原點(diǎn)逆時(shí)針旋轉(zhuǎn)角SKIPIF1<0得到曲線SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)都能使SKIPIF1<0成為某個(gè)函數(shù)的圖像,則SKIPIF1<0的最大值是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0核心考點(diǎn)十三:構(gòu)造函數(shù)解不等式【典型例題】例37.(2023·江西贛州·高三期中(文))已知函數(shù)SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0的導(dǎo)數(shù)SKIPIF1<0,則不等式SKIPIF1<0的解集為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例38.(2023·全國(guó)·高二課時(shí)練習(xí))設(shè)定義在SKIPIF1<0上的函數(shù)SKIPIF1<0的導(dǎo)函數(shù)為SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,則不等式SKIPIF1<0(其中SKIPIF1<0為自然對(duì)數(shù)的底數(shù))的解集為()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0例39.(2023·全國(guó)·高二課時(shí)練習(xí))已知SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0為SKIPIF1<0的導(dǎo)函數(shù),且滿足SKIPIF1<0,則不等式SKIPIF1<0的解集是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0核心考點(diǎn)十四:導(dǎo)數(shù)中的距離問(wèn)題【典型例題】例40.(2023春?荔灣區(qū)期末)設(shè)函數(shù)SKIPIF1<0,其中SKIPIF1<0,SKIPIF1<0,存在SKIPIF1<0使得SKIPIF1<0成立,則實(shí)數(shù)SKIPIF1<0的值是SKIPIF1<0SKIPIF1<0A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.1例41.(2023?龍巖模擬)若對(duì)任意的正實(shí)數(shù)SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上都是增函數(shù),則實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0SKIPIF1<0A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0,SKIPIF1<0例42.(2023?淮北一模)若存在實(shí)數(shù)SKIPIF1<0使得關(guān)于SKIPIF1<0的不等式SKIPIF1<0成立,則實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0SKIPIF1<0A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0,SKIPIF1<0 D.SKIPIF1<0,SKIPIF1<0核心考點(diǎn)十五:導(dǎo)數(shù)的同構(gòu)思想【典型例題】例43.(2023·全國(guó)·高三專題練習(xí))已知關(guān)于SKIPIF1<0的不等式SKIPIF1<0在SKIPIF1<0恒成立,則SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例44.(2023·安徽·合肥一中高三月考(理))設(shè)實(shí)數(shù)SKIPIF1<0,若對(duì)任意的SKIPIF1<0,不等式SKIPIF1<0恒成立,則實(shí)數(shù)m的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例45.(2023·寧夏·石嘴山市第一中學(xué)高二月考(理))若對(duì)任意SKIPIF1<0,不等式SKIPIF1<0恒成立,則實(shí)數(shù)SKIPIF1<0的取值范圍為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0核心考點(diǎn)十六:不等式恒成立之分離參數(shù)、分離函數(shù)、放縮法【典型例題】例46.(2023·浙江·高三月考)已知函數(shù)SKIPIF1<0,不等式SKIPIF1<0對(duì)任意SKIPIF1<0恒成立,則實(shí)數(shù)m的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例47.(2023·四川省資中縣第二中學(xué)高二月考(理))關(guān)于SKIPIF1<0的不等式SKIPIF1<0對(duì)任意SKIPIF1<0恒成立,則SKIPIF1<0的取值范圍是().A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例48.(2023·全國(guó)·高三專題練習(xí))已知SKIPIF1<0,若關(guān)于SKIPIF1<0的不等式SKIPIF1<0恒成立,則SKIPIF1<0的最大值為_(kāi)______.核心考點(diǎn)十七:三次函數(shù)問(wèn)題【典型例題】例49.(2023·全國(guó)·高三課時(shí)練習(xí))設(shè)函數(shù)SKIPIF1<0是SKIPIF1<0的導(dǎo)數(shù),經(jīng)過(guò)探究發(fā)現(xiàn),任意一個(gè)三次函數(shù)SKIPIF1<0的圖象都有對(duì)稱中心SKIPIF1<0,其中SKIPIF1<0滿足SKIPIF1<0,已知函數(shù)SKIPIF1<0,則SKIPIF1<0()A.2021 B.SKIPIF1<0 C.2022 D.SKIPIF1<0例50.(2023·安徽·東至縣第二中學(xué)高三月考(理))人們?cè)谘芯繉W(xué)習(xí)過(guò)程中,發(fā)現(xiàn):三次整式函數(shù)SKIPIF1<0都有對(duì)稱中心,其對(duì)稱中心為SKIPIF1<0(其中SKIPIF1<0).已知函數(shù)SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例51.(2023·全國(guó)·高三月考(文))已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,若三次函數(shù)SKIPIF1<0有三個(gè)零點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,且滿足SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0核心考點(diǎn)十八:切線問(wèn)題【典型例題】例52.(2023·云南紅河·高三月考(理))下列關(guān)于三次函數(shù)SKIPIF1<0敘述正確的是()①函數(shù)SKIPIF1<0的圖象一定是中心對(duì)稱圖形;②函數(shù)SKIPIF1<0可能只有一個(gè)極值點(diǎn);③當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0處的切線與函數(shù)SKIPIF1<0的圖象有且僅有兩個(gè)交點(diǎn);④當(dāng)SKIPIF1<0時(shí),則過(guò)點(diǎn)SKIPIF1<0的切線可能有一條或者三條.A.①③ B.②③ C.①④ D.②④例53.(2023·江西·南昌二中高三月考(文))若函數(shù)SKIPIF1<0的圖象與曲線C:SKIPIF1<0存在公共切線,則實(shí)數(shù)SKIPIF1<0的取值范圍為A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例54.(2023·全國(guó)·高二單元測(cè)試)若過(guò)點(diǎn)SKIPIF1<0可以作曲線SKIPIF1<0的兩條切線,則()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0核心考點(diǎn)十九:任意存在性問(wèn)題【典型例題】例55.(2023·河南·鄭州外國(guó)語(yǔ)中學(xué)高三月考(理))若不等式SKIPIF1<0恒成立,則實(shí)數(shù)SKIPIF1<0的范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0.例56.(2023·全國(guó)·高三專題練習(xí))已知函數(shù)SKIPIF1<0對(duì)SKIPIF1<0,總有SKIPIF1<0,使SKIPIF1<0成立,則SKIPIF1<0的范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例57.(2023·全國(guó)·高二課時(shí)練習(xí))已知SKIPIF1<0,若SKIPIF1<0,且SKIPIF1<0對(duì)任意SKIPIF1<0恒成立,則k的最大值為()A.3 B.4 C.5 D.6核心考點(diǎn)二十:雙參數(shù)最值問(wèn)題【典型例題】例58.(2023·浙江·寧波市北侖中學(xué)高三開(kāi)學(xué)考試)已知SKIPIF1<0,且SKIPIF1<0,對(duì)任意SKIPIF1<0均有SKIPIF1<0,則()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例59.(2023·山西運(yùn)城·高三期中(理))已知在函數(shù)SKIPIF1<0,SKIPIF1<0,若對(duì)SKIPIF1<0,SKIPIF1<0恒成立,則實(shí)數(shù)SKIPIF1<0的取值范圍為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例60.(2023·黑龍江·鶴崗一中高三月考(理))當(dāng)SKIPIF1<0時(shí),不等式SKIPIF1<0,SKIPIF1<0,SKIPIF1<0恒成立,則SKIPIF1<0的最大值為()A.SKIPIF1<0 B.2 C.SKIPIF1<0 D.SKIPIF1<0核心考點(diǎn)二十一:切線斜率與割線斜率【典型例題】例61.(2023·廣東·佛山一中高三月考)已知函數(shù)SKIPIF1<0SKIPIF1<0,在函數(shù)SKIPIF1<0圖象上任取兩點(diǎn)SKIPIF1<0,若直線SKIPIF1<0的斜率的絕對(duì)值都不小于SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例62.(2023·山西大同·高一期中)已知函數(shù)SKIPIF1<0是定義在R上的函數(shù),且SKIPIF1<0是奇函數(shù),SKIPIF1<0是偶函數(shù),SKIPIF1<0SKIPIF1<0,記SKIPIF1<0,若對(duì)于任意的SKIPIF1<0,都有SKIPIF1<0,則實(shí)數(shù)a的取值范圍為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例63.(2023·全國(guó)·高一課時(shí)練習(xí))已知函數(shù)SKIPIF1<0,若對(duì)任意的SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,都有SKIPIF1<0成立,則實(shí)數(shù)a的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0核心考點(diǎn)二十二:最大值的最小值問(wèn)題(平口單峰函數(shù)、鉛錘距離)【典型例題】例64.設(shè)二次函數(shù)SKIPIF1<0在SKIPIF1<0上有最大值,最大值為SKIPIF1<0(a),當(dāng)SKIPIF1<0(a)取最小值時(shí),SKIPIF1<0SKIPIF1<0A.0 B.1 C.SKIPIF1<0 D.SKIPIF1<0例65.(2023春?紹興期末)已知函數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0的最大值為SKIPIF1<0,若SKIPIF1<0的最小值為1時(shí),則SKIPIF1<0的值可以是SKIPIF1<0SKIPIF1<0A.SKIPIF1<0 B.0 C.SKIPIF1<0 D.1例66.(2023?濟(jì)南模擬)已知函數(shù)SKIPIF1<0,若對(duì)任意的實(shí)數(shù)SKIPIF1<0,SKIPIF1<0,總存在SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0成立,則實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0SKIPIF1<0A.SKIPIF1<0 B.SKIPIF1<0,SKIPIF1<0 C.SKIPIF1<0,SKIPIF1<0 D.SKIPIF1<0,SKIPIF1<0核心考點(diǎn)二十三:兩邊夾問(wèn)題和零點(diǎn)相同問(wèn)題【典型例題】例67.(2023春?湖州期末)若存在正實(shí)數(shù)SKIPIF1<0,SKIPIF1<0使得不等式SKIPIF1<0成立,則SKIPIF1<0SKIPIF1<0A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例68.(2023?上饒二模)已知實(shí)數(shù)SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的值為SKIPIF1<0SKIPIF1<0A.2 B.1 C.0 D.SKIPIF1<0例69.(2023?崇明區(qū)期末)若不等式SKIPIF1<0對(duì)SKIPIF1<0,SKIPIF1<0恒成立,則SKIPIF1<0的值等于SKIPIF1<0SKIPIF1<0A.SKIPIF1<0 B.SKIPIF1<0 C.1 D.2核心考點(diǎn)二十四:函數(shù)的伸縮變換問(wèn)題【典型例題】例70.(2023·天津一中高三月考)定義域?yàn)镾KIPIF1<0的函數(shù)SKIPIF1<0滿足SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,若當(dāng)SKIPIF1<0時(shí),不等式SKIPIF1<0恒成立,則實(shí)數(shù)SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0例71.(2023·浙江·杭州高級(jí)中學(xué)高三期中)定義域?yàn)镾KIPIF1<0的函數(shù)SKIPIF1<0滿足SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,若SKIPIF1<0時(shí),SKIPIF1<0恒成立,則實(shí)數(shù)SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0例72.(2023屆山西省榆林市高三二模理科數(shù)學(xué)試卷)定義域?yàn)镾KIPIF1<0的函數(shù)SKIPIF1<0滿足SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,若當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0恒成立,則實(shí)數(shù)SKIPIF1<0的取值范圍為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【新題速遞】一、單選題1.(2023·廣西南寧·南寧二中??家荒#┮阎瘮?shù)SKIPIF1<0,若函數(shù)SKIPIF1<0,存在5個(gè)零點(diǎn),則SKIPIF1<0(
)A.1 B.SKIPIF1<0 C.1或SKIPIF1<0 D.SKIPIF1<02.(2023春·陜西西安·高三統(tǒng)考期末)已知函數(shù)SKIPIF1<0,若函數(shù)SKIPIF1<0,則函數(shù)SKIPIF1<0的零點(diǎn)個(gè)數(shù)為(
)A.1 B.3 C.4 D.53.(2023·江西景德鎮(zhèn)·統(tǒng)考模擬預(yù)測(cè))已知函數(shù)SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.4 B.SKIPIF1<0 C.SKIPIF1<0 D.54.(2023春·內(nèi)蒙古赤峰·高三統(tǒng)考階段練習(xí))已知實(shí)數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則下列說(shuō)法中,正確的是(
).A.SKIPIF1<0 B.存在a,b,使得SKIPIF1<0C.SKIPIF1<0 D.存在a,b,使得直線SKIPIF1<0與圓SKIPIF1<0相切5.(2023·全國(guó)·高三專題練習(xí))已知SKIPIF1<0,SKIPIF1<0,動(dòng)點(diǎn)C在曲線T:SKIPIF1<0上,若△ABC面積的最小值為1,則SKIPIF1<0不可能為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<06.(2023·浙江溫州·統(tǒng)考模擬預(yù)測(cè))已知P為直線SKIPIF1<0上一動(dòng)點(diǎn),過(guò)點(diǎn)P作拋物線SKIPIF1<0的兩條切線,切點(diǎn)記為A,B,則原點(diǎn)到直線SKIPIF1<0距離的最大值為(
)A.1 B.SKIPIF1<0 C.SKIPIF1<0 D.27.(2023春·江西贛州·高三贛州市贛縣第三中學(xué)校考期中)已知SKIPIF1<0,SKIPIF1<0,直線SKIPIF1<0與曲線SKIPIF1<0相切,則SKIPIF1<0的最小值是(
)A.16 B.12 C.8 D.48.(2023春·江蘇蘇州·高三蘇州中學(xué)??茧A段練習(xí))若關(guān)于x的不等式SKIPIF1<0對(duì)于任意SKIPIF1<0恒成立,則整數(shù)k的最大值為(
)A.-2 B.-1 C.0 D.1二、多選題9.(2023·江蘇蘇州·蘇州中學(xué)??寄M預(yù)測(cè))已知函數(shù)SKIPIF1<0,SKIPIF1<0,則下列說(shuō)法正確的是(
)A.SKI
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 專業(yè)保姆照顧老人合同書(shū)
- 中小企業(yè)采購(gòu)合同樣本
- 個(gè)體工商戶聯(lián)營(yíng)合作協(xié)議合同樣本
- 專業(yè)離婚財(cái)產(chǎn)分割合同范例解析
- 鄉(xiāng)村旅游產(chǎn)業(yè)發(fā)展戰(zhàn)略合作合同書(shū)范本2025
- 臨時(shí)勞動(dòng)合同(籌備期間雇傭)
- 個(gè)人商業(yè)貸款合同
- 臨時(shí)變壓器租賃合同版
- 二手房交易正式合同范本
- 2025屆畢業(yè)生就業(yè)合同延期協(xié)議書(shū)
- 江蘇省蘇州市2024-2025學(xué)年高三上學(xué)期1月期末生物試題(有答案)
- 銷售與銷售目標(biāo)管理制度
- 特殊教育學(xué)校2024-2025學(xué)年度第二學(xué)期教學(xué)工作計(jì)劃
- 2025年第一次工地開(kāi)工會(huì)議主要議程開(kāi)工大吉模板
- 第16課抗日戰(zhàn)爭(zhēng)課件-人教版高中歷史必修一
- 對(duì)口升學(xué)語(yǔ)文模擬試卷(9)-江西省(解析版)
- 糖尿病高滲昏迷指南
- 【公開(kāi)課】同一直線上二力的合成+課件+2024-2025學(xué)年+人教版(2024)初中物理八年級(jí)下冊(cè)+
- 南京信息工程大學(xué)《教師領(lǐng)導(dǎo)力》2021-2022學(xué)年第一學(xué)期期末試卷
- 信息科技大單元教學(xué)設(shè)計(jì)之七年級(jí)第三單元便捷的互聯(lián)網(wǎng)服務(wù)
- 壁壘加筑未來(lái)可期:2024年短保面包行業(yè)白皮書(shū)
評(píng)論
0/150
提交評(píng)論