2025屆福建省南安市國光中學數(shù)學高一上期末檢測試題含解析_第1頁
2025屆福建省南安市國光中學數(shù)學高一上期末檢測試題含解析_第2頁
2025屆福建省南安市國光中學數(shù)學高一上期末檢測試題含解析_第3頁
2025屆福建省南安市國光中學數(shù)學高一上期末檢測試題含解析_第4頁
2025屆福建省南安市國光中學數(shù)學高一上期末檢測試題含解析_第5頁
已閱讀5頁,還剩7頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2025屆福建省南安市國光中學數(shù)學高一上期末檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.下列四組函數(shù)中,表示相同函數(shù)的一組是()A.,B.,C.,D.,2.設函數(shù),若是奇函數(shù),則的值是()A.2 B.C.4 D.3.已知直線的斜率為1,則直線的傾斜角為A. B.C. D.4.已知函數(shù)若則的值為().A. B.或4C. D.或45.設且,若對恒成立,則a的取值范圍是()A. B.C. D.6.“”是“函數(shù)在內(nèi)單調(diào)遞增”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要7.下列函數(shù)是偶函數(shù)且值域為的是()①;②;③;④A.①② B.②③C.①④ D.③④8.將函數(shù)的圖象沿軸向左平移個單位后,得到一個偶函數(shù)的圖象,則的一個可能取值為A. B.C. D.9.已知函數(shù)的圖像關于直線對稱,且對任意,,有,則使得成立的x的取值范圍是()A. B.C. D.10.若,,則的值為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù)f(x)=①f(5)=______;②函數(shù)f(x)與函數(shù)y=(12.要在半徑cm的圓形金屬板上截取一塊扇形板,使弧AB的長為m,那么圓心角_________.(用弧度表示)13.已知函數(shù),則=_________14.集合,則____________15.若關于的不等式對任意的恒成立,則實數(shù)的取值范圍為____________16.已知直線,互相平行,則__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.若=,是第四象限角,求的值.18.設關于x二次函數(shù)(1)若,解不等式;(2)若不等式在上恒成立,求實數(shù)m的取值范圍19.已知函數(shù)(1)求函數(shù)的最小正周期、單調(diào)區(qū)間;(2)求函數(shù)在區(qū)間上的最小值和最大值.20.已知且滿足不等式.(1)求不等式;(2)若函數(shù)在區(qū)間有最小值為,求實數(shù)值21.設全集為,或,.(1)求,;(2)求.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】根據(jù)相同函數(shù)的判斷原則進行定義域的判斷即可選出答案.【詳解】解:由題意得:對于選項A:的定義域為,的定義域為,所以這兩個函數(shù)的定義域不同,不表示相同的函數(shù),故A錯誤;對于選項B:的定義域為,的定義域為,所以這兩個函數(shù)的定義域不同,不表示相同的函數(shù),故B錯誤;對于選項C:的定義域為,的定義域為,這兩函數(shù)的定義域相同,且對應關系也相同,所以表示相同的函數(shù),故C正確;對于選項D:的定義域為,的定義域為或,所以這兩個函數(shù)的定義域不同,不表示相同的函數(shù),故D錯誤.故選:C2、D【解析】根據(jù)為奇函數(shù),可求得,代入可得答案.【詳解】若是奇函數(shù),則,所以,,.故選:D.3、A【解析】設直線的傾斜角為,則由直線的斜率,則故故選4、B【解析】利用分段討論進行求解.【詳解】當時,,(舍);當時,,或(舍);當時,,;綜上可得或.故選:B.【點睛】本題主要考查分段函數(shù)的求值問題,側(cè)重考查分類討論的意識.5、C【解析】分,,作與的圖象分析可得.【詳解】當時,由函數(shù)與的圖象可知不滿足題意;當時,函數(shù)單調(diào)遞減,由圖知,要使對恒成立,只需滿足,得.故選:C注意事項:

用黑色墨水的鋼筆或簽字筆將答案寫在答題卡上.

本卷共9題,共60分.6、A【解析】由函數(shù)在內(nèi)單調(diào)遞增得,進而根據(jù)充分,必要條件判斷即可.【詳解】解:因為函數(shù)在內(nèi)單調(diào)遞增,所以,因為是的真子集,所以“”是“函數(shù)在內(nèi)單調(diào)遞增”的充分而不必要條件故選:A7、C【解析】根據(jù)奇偶性的定義依次判斷,并求函數(shù)的值域即可得答案.【詳解】對于①,是偶函數(shù),且值域為;對于②,是奇函數(shù),值域為;對于③,是偶函數(shù),值域為;對于④,偶函數(shù),且值域為,所以符合題意的有①④故選:C.8、B【解析】得到的偶函數(shù)解析式為,顯然【考點定位】本題考查三角函數(shù)的圖象和性質(zhì),要注意三角函數(shù)兩種變換的區(qū)別,選擇合適的值通過誘導公式把轉(zhuǎn)化為余弦函數(shù)是考查的最終目的.9、A【解析】解有關抽象函數(shù)的不等式考慮函數(shù)的單調(diào)性,根據(jù)已知可得在單調(diào)遞增,再由與的圖象關系結(jié)合已知,可得為偶函數(shù),化為自變量關系,求解即可.【詳解】設,在增函數(shù),函數(shù)的圖象是由的圖象向右平移2個單位得到,且函數(shù)的圖像關于直線對稱,所以的圖象關于軸對稱,即為偶函數(shù),等價于,的取值范圍是.故選:A.【點睛】本題考查函數(shù)的單調(diào)性、奇偶性、解不等式問題,注意函數(shù)圖象間的平移變換,考查邏輯推理能力,屬于中檔題.10、D【解析】根據(jù)誘導公式即可直接求值.【詳解】因為,所以,又因為,所以,所以.故選:D.二、填空題:本大題共6小題,每小題5分,共30分。11、①.-14【解析】①根據(jù)函數(shù)解析式,代值求解即可;②在同一直角坐標系中畫出兩個函數(shù)的圖象,即可數(shù)形結(jié)合求得結(jié)果.【詳解】①由題可知:f5②根據(jù)f(x)的解析式,在同一坐標系下繪制f(x)與y=(數(shù)形結(jié)合可知,兩個函數(shù)有3個交點.故答案為:-14;12、【解析】由弧長公式變形可得:,代入計算即可.【詳解】解:由題意可知:(弧度).故答案為:.13、【解析】按照解析式直接計算即可.【詳解】.故答案為:-3.14、【解析】分別解出集合,,再根據(jù)并集的定義計算可得.【詳解】∵∴,∵,∴,則,故答案為:【點睛】本題考查指數(shù)不等式、對數(shù)不等式的解法,并集的運算,屬于基礎題.15、【解析】根據(jù)題意顯然可知,整理不等式得:,令,求出在的范圍即可求出答案.【詳解】由題意知:,即對任意的恒成立,當,得:,即對任意的恒成立,即對任意的恒成立,令,在上單減,所以,所以.故答案為:16、【解析】由兩直線平行的充要條件可得:,即:,解得:,當時,直線為:,直線為:,兩直線重合,不合題意,當時,直線為:,直線為:,兩直線不重合,綜上可得:.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、【解析】先計算正弦與正切,利用誘導公式化簡可得【詳解】若=,是第四象限角,則原式=.18、(1);(2).【解析】(1)由題設有,解一元二次不等式求解集即可.(2)由題意在上恒成立,令并討論m范圍,結(jié)合二次函數(shù)的性質(zhì)求參數(shù)范圍.【小問1詳解】由題設,等價于,即,解得,所以該不等式解集為.【小問2詳解】由題設,在上恒成立令,則對稱軸且,①當時,開口向下且,要使對恒成立,所以,解得,則②當時,開口向上,只需,即綜上,19、(1),增區(qū)間是,減區(qū)間是(2),【解析】(1)根據(jù)余弦函數(shù)的圖象與性質(zhì),求出f(x)的最小正周期和單調(diào)增、減區(qū)間;(2)求出x∈[,]時2x的取值范圍,從而求得f(x)的最大最小值【詳解】(1)函數(shù)f(x)cos(2x)中,它的最小正周期為Tπ,令﹣π+2kπ≤2x2kπ,k∈Z,解得kπ≤xkπ,k∈Z,所以f(x)的單調(diào)增區(qū)間為[kπ,kπ],k∈Z;令2kπ≤2xπ+2kπ,k∈Z,解得kπ≤xkπ,k∈Z,所以f(x)的單調(diào)減區(qū)間為[kπ,kπ],k∈Z;(2)x∈[,]時,2x≤π,所以2x;令2x,解得x,此時f(x)取得最小值為f()()=﹣1;令2x0,解得x,此時f(x)取得最大值為f()1【點睛】本題考查了三角函數(shù)的圖象與性質(zhì)的應用問題,熟記單調(diào)區(qū)間是關鍵,是基礎題20、(1);(2).【解析】(1)運用指數(shù)不等式的解法,可得的范圍,再由對數(shù)不等式的解法,可得解集;(2)由題意可得函數(shù)在遞減,可得最小值,解方程可得的值試題解析:(1)∵22a+1>25a-2.∴2a+1>5a-2,即3a<3∴a<1,∵a>0,a<1∴0<a<1.∵loga(3x+1)<loga(7-5x).∴等價為,即,∴,即不等式的解集為(,).(2)∵0<a<1∴函數(shù)y=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論