湖南省茶陵三中2025屆高一數(shù)學第一學期期末教學質(zhì)量檢測模擬試題含解析_第1頁
湖南省茶陵三中2025屆高一數(shù)學第一學期期末教學質(zhì)量檢測模擬試題含解析_第2頁
湖南省茶陵三中2025屆高一數(shù)學第一學期期末教學質(zhì)量檢測模擬試題含解析_第3頁
湖南省茶陵三中2025屆高一數(shù)學第一學期期末教學質(zhì)量檢測模擬試題含解析_第4頁
湖南省茶陵三中2025屆高一數(shù)學第一學期期末教學質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

湖南省茶陵三中2025屆高一數(shù)學第一學期期末教學質(zhì)量檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若,則的大小關系是()A. B.C. D.2.將函數(shù)的圖像先向右平移個單位,再把所得函數(shù)圖像橫坐標變?yōu)樵瓉淼?,縱坐標不變,得到函數(shù)的圖像,若函數(shù)在上沒有零點,則的取值范圍是()A. B.C. D.3.下列各角中,與終邊相同的角為()A. B.160°C. D.360°4.已知函數(shù)滿足,則()A. B.C. D.5.向量,若,則k的值是()A.1 B.C.4 D.6.某市政府為了增加農(nóng)民收入,決定對該市特色農(nóng)副產(chǎn)品的科研創(chuàng)新和廣開銷售渠道加大投入,計劃逐年加大研發(fā)和宣傳資金投入.若該政府2020年全年投人資金120萬元,在此基礎上,每年投入的資金比上一年增長12%,則該政府全年投入的資金翻一番(2020年的兩倍)的年份是(參考數(shù)據(jù):lg1.12≈0.05,lg2≈0.30)()A.2027年 B.2026年C.2025年 D.2025屆7.已知函數(shù)關于x的方程有4個根,,,,則的取值范圍是()A. B.C. D.8.設非零向量、、滿足,,則向量、的夾角()A. B.C. D.9.已知角的終邊經(jīng)過點,則的值為A. B.C. D.10.函數(shù)的圖象大致是A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在正三棱柱中,為棱的中點,若是面積為6的直角三角形,則此三棱柱的體積為__________12.已知向量,,則向量在方向上的投影為___________.13.經(jīng)過兩條直線和的交點,且垂直于直線的直線方程為__________14.定義為中的最大值,函數(shù)的最小值為,如果函數(shù)在上單調(diào)遞減,則實數(shù)的范圍為__________15.函數(shù)f(x)=+的定義域為____________16.將函數(shù)圖象上所有點的橫坐標壓縮為原來的后,再將圖象向左平移個單位長度,得到函數(shù)的圖象,則的單調(diào)遞增區(qū)間為____________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)求的周期和單調(diào)區(qū)間;(2)若,,求的值.18.已知函數(shù),.(1)若角滿足,求;(2)若圓心角為,半徑為2的扇形的弧長為,且,,求.19.如圖,在底面是正方形的四棱錐面ABCD,BD交AC于點E,F(xiàn)是PC中點,G為AC上一點.(1)求證:;(2)確定點G在線段AC上的位置,使FG//平面PBD,并說明理由;(3)當二面角的大小為時,求PC與底面ABCD所成角的正切值.20.某港口水深y(米)是時間t(0≤t≤24,單位:小時)的函數(shù),下面是水深數(shù)據(jù):t(小時)03691215182124y(米)10.013.09.97.010013.010.17.010.0據(jù)上述數(shù)據(jù)描成的曲線如圖所示,該曲線可近似的看成函數(shù)的圖象(1)試根據(jù)數(shù)據(jù)表和曲線,求的解析式;(2)一般情況下,船舶航行時船底與海底的距離不小于4.5米是安全的,如果某船的吃水度(船底與水面的距離)為7米,那么該船在什么時間段能夠安全進港?21.化簡或計算下列各式.(1);(2)

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】利用指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性,把各數(shù)與中間值0,1比較即得【詳解】利用指數(shù)函數(shù)的單調(diào)性知:,即;利用指數(shù)函數(shù)的單調(diào)性知:,即;利用對數(shù)函數(shù)的單調(diào)性知:,即;所以故選:C2、C【解析】先由圖象的變換求出的解析式,再由定義域求出的范圍,再利用正弦函數(shù)的圖象和性質(zhì),求得的取值范圍.【詳解】函數(shù)的圖象先向右平移個單位長度,可得的圖象,再將圖象上每個點的橫坐標變?yōu)樵瓉淼谋?縱坐標不變),得到函數(shù)的圖象,∴周期,由,則,若函數(shù)在上沒有零點,結(jié)合正弦函數(shù)的圖象觀察則∴,,解得,又,解得,當時,解得,當時,,可得,.故選:C【點睛】本題考查正弦型的圖象變換及零點問題,此類問題通常采用數(shù)形結(jié)合思想,構(gòu)建不等關系式求解,屬于較難題.第II卷3、C【解析】由終邊相同角的定義判斷【詳解】與終邊相同角為,而時,,其它選項都不存在整數(shù),使之成立故選:C4、D【解析】由已知可得出,利用弦化切可得出關于的方程,結(jié)合可求得的值.【詳解】因為,且,則,,可得,解得.故選:D5、B【解析】首先算出的坐標,然后根據(jù)建立方程求解即可.【詳解】因為所以,因為,所以,所以故選:B6、B【解析】根據(jù)題意列出指數(shù)方程,取對數(shù),根據(jù)對數(shù)的運算性質(zhì),結(jié)合題中所給的數(shù)據(jù)進行求解即可.【詳解】設第n(n∈N*)年該政府全年投入的資金翻一番,依題意得:120(1+12%)n-1=240,則lg[120(1+12%)n-1]=lg240,∴l(xiāng)g120+(n-1)lg1.12=lg240,∴(n-1)lg1.12=lg2,∴,即該政府全年投入的資金翻一番的年份是2026年,故選:B.7、B【解析】依題意畫出函數(shù)圖象,結(jié)合圖象可知且,,即可得到,則,再令,根據(jù)二次函數(shù)的性質(zhì)求出的取值范圍,最后根據(jù)對勾函數(shù)的性質(zhì)計算可得;【詳解】解:因,所以函數(shù)圖象如下所示:由圖象可知,其中,其中,,,則,得..令,,又在上單調(diào)減,,即.故選:B.8、B【解析】根據(jù)已知條件,應用向量數(shù)量積的運算律可得,由得,即可求出向量、的夾角.【詳解】由題意,,即,∵,∴,則,又,∴.故選:B9、C【解析】因為點在單位圓上,又在角的終邊上,所以;則;故選C.10、A【解析】利用函數(shù)的奇偶性排除選項B、C項,然后利用特殊值判斷,即可得到答案【詳解】由題意,函數(shù)滿足,所以函數(shù)為偶函數(shù),排除B、C,又因為時,,此時,所以排除D,故選A【點睛】本題主要考查了函數(shù)的圖象的識別問題,其中解答中熟練應用函數(shù)的奇偶性進行排除,以及利用特殊值進行合理判斷是解答的關鍵,著重考查了分析問題解決問題的能力,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】由題,設,截面是面積為6的直角三角形,則由得,又則故答案為12、【解析】直接利用投影的定義求在方向上的投影.【詳解】因為,,設與夾角為,,則向量在方向上的投影為:.所以在方向上投影為故答案為:.13、【解析】聯(lián)立方程組求得交點的坐標為,根據(jù)題意求得所求直線的斜率為,結(jié)合點斜式可得所求直線的方程.【詳解】聯(lián)立方程組,得交點,因為所求直線垂直于直線,故所求直線的斜率,由點斜式得所求直線方程為,即.故答案為:.14、【解析】根據(jù)題意,將函數(shù)寫成分段函數(shù)的形式,分析可得其最小值,即可得的值,進而可得,由減函數(shù)的定義可得,解得的范圍,即可得答案【詳解】根據(jù)題意,,則,根據(jù)單調(diào)性可得先減后增,所以當時,取得最小值2,則有,則,因為為減函數(shù),必有,解可得:,即m的取值范圍為;故答案為.【點睛】本題考查函數(shù)單調(diào)性、函數(shù)最值的計算,關鍵是求出c的值.15、【解析】根據(jù)題意,結(jié)合限制條件,解指數(shù)不等式,即可求解.【詳解】根據(jù)題意,由,解得且,因此定義域為.故答案為:.16、【解析】根據(jù)函數(shù)圖象的變換,求出的解析式,結(jié)合函數(shù)的單調(diào)性進行求解即可.【詳解】由數(shù)圖象上所有點的橫坐標壓縮為原來的后,得到,再將圖象向左平移個單位長度,得到函數(shù)的圖象,即令,函數(shù)的單調(diào)遞增區(qū)間是由,得,的單調(diào)遞增區(qū)間為.故答案為:三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)周期為,增區(qū)間為,減區(qū)間為;(2).【解析】(1)利用三角恒等變換思想可得出,利用周期公式可求出函數(shù)的周期,分別解不等式和,可得出該函數(shù)的增區(qū)間和減區(qū)間;(2)由可得出,利用同角三角函數(shù)的平方關系求出的值,然后利用兩角差的余弦公式可求出的值.詳解】(1),所以,函數(shù)的周期為,令,解得;令,解得.因此,函數(shù)的增區(qū)間為,減區(qū)間為;(2),,,,,.【點睛】本題考查正弦型函數(shù)周期和單調(diào)區(qū)間的求解,同時也考查了利用兩角差的余弦公式求值,考查運算求解能力,屬于中等題.18、(1)(2)或【解析】(1)對已知式子化簡變形求出,從而可求出的值,(2)先對化簡變形得,再由可求出,再利用弧長公式可求得結(jié)果【小問1詳解】∵,∴,∴.【小問2詳解】∵∴,∴,∵,∴或.∴或.19、(1)見解析(2)GEC中點(3)【解析】試題分析:(1)要證:BD⊥FG,先證BD⊥平面PAC即可;(2)確定點G在線段AC上的位置,使FG∥平面PBD,F(xiàn)G∥平面PBD內(nèi)的一條直線即可;(3)利用向量數(shù)量積求解法向量,然后轉(zhuǎn)化求出PC與底面ABCD所成角的正切值解析:(1)(2)當GEC中點,即時,FG//平面PBD理由如下:連接PE,F(xiàn)為PC中點,G為EC中點,F(xiàn)G//PEFG//平面PBD(3)作作于H,連接DH,,四邊形ABCD是正方形,又是二面角的平面角,即是PC與底面ABCD所成角連接EH,則又,PC與與底面ABCD所成角的正切值是.點睛:這個題目考查了空間中的直線和平面的位置關系.證明線線垂直,可以從線面垂直入手,也可以平移到同一平面中利用平面幾何知識證明;求線面角,一是可以利用等體積計算出直線的端點到面的距離,除以線段長度就是線面角的正弦值;在高二的課本上講到還可以建系,用空間向量的方法求直線的方向向量和面的法向量,再求線面角即可20

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論