版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆廣東省揭陽市揭西河婆中學高考數(shù)學四模試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),,若總有恒成立.記的最小值為,則的最大值為()A.1 B. C. D.2.下列選項中,說法正確的是()A.“”的否定是“”B.若向量滿足,則與的夾角為鈍角C.若,則D.“”是“”的必要條件3.已知拋物線和點,直線與拋物線交于不同兩點,,直線與拋物線交于另一點.給出以下判斷:①以為直徑的圓與拋物線準線相離;②直線與直線的斜率乘積為;③設過點,,的圓的圓心坐標為,半徑為,則.其中,所有正確判斷的序號是()A.①② B.①③ C.②③ D.①②③4.已知函數(shù),其圖象關于直線對稱,為了得到函數(shù)的圖象,只需將函數(shù)的圖象上的所有點()A.先向左平移個單位長度,再把所得各點橫坐標伸長為原來的2倍,縱坐標保持不變B.先向右平移個單位長度,再把所得各點橫坐標縮短為原來的,縱坐標保持不變C.先向右平移個單位長度,再把所得各點橫坐標伸長為原來的2倍,縱坐標保持不變D.先向左平移個單位長度,再把所得各點橫坐標縮短為原來的,縱坐標保持不變5.已知數(shù)列的首項,且,其中,,,下列敘述正確的是()A.若是等差數(shù)列,則一定有 B.若是等比數(shù)列,則一定有C.若不是等差數(shù)列,則一定有 D.若不是等比數(shù)列,則一定有6.“”是“函數(shù)的圖象關于直線對稱”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件7.若的內角滿足,則的值為()A. B. C. D.8.從拋物線上一點(點在軸上方)引拋物線準線的垂線,垂足為,且,設拋物線的焦點為,則直線的斜率為()A. B. C. D.9.已知P是雙曲線漸近線上一點,,是雙曲線的左、右焦點,,記,PO,的斜率為,k,,若,-2k,成等差數(shù)列,則此雙曲線的離心率為()A. B. C. D.10.已知,則下列關系正確的是()A. B. C. D.11.已知函數(shù),,若存在實數(shù),使成立,則正數(shù)的取值范圍為()A. B. C. D.12.甲在微信群中發(fā)了一個6元“拼手氣”紅包,被乙?丙?丁三人搶完,若三人均領到整數(shù)元,且每人至少領到1元,則乙獲得“最佳手氣”(即乙領到的錢數(shù)多于其他任何人)的概率是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知集合,則____________.14.(5分)已知為實數(shù),向量,,且,則____________.15.如圖,在梯形中,∥,分別是的中點,若,則的值為___________.16.函數(shù)的單調增區(qū)間為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知,函數(shù).(Ⅰ)若在區(qū)間上單調遞增,求的值;(Ⅱ)若恒成立,求的最大值.(參考數(shù)據:)18.(12分)已知函數(shù).(1)當時,求曲線在點的切線方程;(2)討論函數(shù)的單調性.19.(12分)隨著科技的發(fā)展,網絡已逐漸融入了人們的生活.網購是非常方便的購物方式,為了了解網購在我市的普及情況,某調查機構進行了有關網購的調查問卷,并從參與調查的市民中隨機抽取了男女各100人進行分析,從而得到表(單位:人)經常網購偶爾或不用網購合計男性50100女性70100合計(1)完成上表,并根據以上數(shù)據判斷能否在犯錯誤的概率不超過0.01的前提下認為我市市民網購與性別有關?(2)①現(xiàn)從所抽取的女市民中利用分層抽樣的方法抽取10人,再從這10人中隨機選取3人贈送優(yōu)惠券,求選取的3人中至少有2人經常網購的概率;②將頻率視為概率,從我市所有參與調查的市民中隨機抽取10人贈送禮品,記其中經常網購的人數(shù)為,求隨機變量的數(shù)學期望和方差.參考公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82820.(12分)年,山東省高考將全面實行“選”的模式(即:語文、數(shù)學、外語為必考科目,剩下的物理、化學、歷史、地理、生物、政治六科任選三科進行考試).為了了解學生對物理學科的喜好程度,某高中從高一年級學生中隨機抽取人做調查.統(tǒng)計顯示,男生喜歡物理的有人,不喜歡物理的有人;女生喜歡物理的有人,不喜歡物理的有人.(1)據此資料判斷是否有的把握認為“喜歡物理與性別有關”;(2)為了了解學生對選科的認識,年級決定召開學生座談會.現(xiàn)從名男同學和名女同學(其中男女喜歡物理)中,選取名男同學和名女同學參加座談會,記參加座談會的人中喜歡物理的人數(shù)為,求的分布列及期望.,其中.21.(12分)已知橢圓過點,設橢圓的上頂點為,右頂點和右焦點分別為,,且.(1)求橢圓的標準方程;(2)設直線交橢圓于,兩點,設直線與直線的斜率分別為,,若,試判斷直線是否過定點?若過定點,求出該定點的坐標;若不過定點,請說明理由.22.(10分)已知,,,.(1)求的值;(2)求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
根據總有恒成立可構造函數(shù),求導后分情況討論的最大值可得最大值最大值,即.根據題意化簡可得,求得,再換元求導分析最大值即可.【詳解】由題,總有即恒成立.設,則的最大值小于等于0.又,若則,在上單調遞增,無最大值.若,則當時,,在上單調遞減,當時,,在上單調遞增.故在處取得最大值.故,化簡得.故,令,可令,故,當時,,在遞減;當時,,在遞增.故在處取得極大值,為.故的最大值為.故選:C【點睛】本題主要考查了根據導數(shù)求解函數(shù)的最值問題,需要根據題意分析導數(shù)中參數(shù)的范圍,再分析函數(shù)的最值,進而求導構造函數(shù)求解的最大值.屬于難題.2、D【解析】
對于A根據命題的否定可得:“?x0∈R,x02-x0≤0”的否定是“?x∈R,x2-x>0”,即可判斷出;對于B若向量滿足,則與的夾角為鈍角或平角;對于C當m=0時,滿足am2≤bm2,但是a≤b不一定成立;對于D根據元素與集合的關系即可做出判斷.【詳解】選項A根據命題的否定可得:“?x0∈R,x02-x0≤0”的否定是“?x∈R,x2-x>0”,因此A不正確;選項B若向量滿足,則與的夾角為鈍角或平角,因此不正確.選項C當m=0時,滿足am2≤bm2,但是a≤b不一定成立,因此不正確;選項D若“”,則且,所以一定可以推出“”,因此“”是“”的必要條件,故正確.故選:D.【點睛】本題考查命題的真假判斷與應用,涉及知識點有含有量詞的命題的否定、不等式性質、向量夾角與性質、集合性質等,屬于簡單題.3、D【解析】
對于①,利用拋物線的定義,利用可判斷;對于②,設直線的方程為,與拋物線聯(lián)立,用坐標表示直線與直線的斜率乘積,即可判斷;對于③,將代入拋物線的方程可得,,從而,,利用韋達定理可得,再由,可用m表示,線段的中垂線與軸的交點(即圓心)橫坐標為,可得a,即可判斷.【詳解】如圖,設為拋物線的焦點,以線段為直徑的圓為,則圓心為線段的中點.設,到準線的距離分別為,,的半徑為,點到準線的距離為,顯然,,三點不共線,則.所以①正確.由題意可設直線的方程為,代入拋物線的方程,有.設點,的坐標分別為,,則,.所以.則直線與直線的斜率乘積為.所以②正確.將代入拋物線的方程可得,,從而,.根據拋物線的對稱性可知,,兩點關于軸對稱,所以過點,,的圓的圓心在軸上.由上,有,,則.所以,線段的中垂線與軸的交點(即圓心)橫坐標為,所以.于是,,代入,,得,所以.所以③正確.故選:D【點睛】本題考查了拋物線的性質綜合,考查了學生綜合分析,轉化劃歸,數(shù)形結合,數(shù)學運算的能力,屬于較難題.4、D【解析】
由函數(shù)的圖象關于直線對稱,得,進而得再利用圖像變換求解即可【詳解】由函數(shù)的圖象關于直線對稱,得,即,解得,所以,,故只需將函數(shù)的圖象上的所有點“先向左平移個單位長度,得再將橫坐標縮短為原來的,縱坐標保持不變,得”即可.故選:D【點睛】本題考查三角函數(shù)的圖象與性質,考查圖像變換,考查運算求解能力,是中檔題5、C【解析】
根據等差數(shù)列和等比數(shù)列的定義進行判斷即可.【詳解】A:當時,,顯然符合是等差數(shù)列,但是此時不成立,故本說法不正確;B:當時,,顯然符合是等比數(shù)列,但是此時不成立,故本說法不正確;C:當時,因此有常數(shù),因此是等差數(shù)列,因此當不是等差數(shù)列時,一定有,故本說法正確;D:當時,若時,顯然數(shù)列是等比數(shù)列,故本說法不正確.故選:C【點睛】本題考查了等差數(shù)列和等比數(shù)列的定義,考查了推理論證能力,屬于基礎題.6、A【解析】
先求解函數(shù)的圖象關于直線對稱的等價條件,得到,分析即得解.【詳解】若函數(shù)的圖象關于直線對稱,則,解得,故“”是“函數(shù)的圖象關于直線對稱”的充分不必要條件.故選:A【點睛】本題考查了充分不必要條件的判斷,考查了學生邏輯推理,概念理解,數(shù)學運算的能力,屬于基礎題.7、A【解析】
由,得到,得出,再結合三角函數(shù)的基本關系式,即可求解.【詳解】由題意,角滿足,則,又由角A是三角形的內角,所以,所以,因為,所以.故選:A.【點睛】本題主要考查了正弦函數(shù)的性質,以及三角函數(shù)的基本關系式和正弦的倍角公式的化簡、求值問題,著重考查了推理與計算能力.8、A【解析】
根據拋物線的性質求出點坐標和焦點坐標,進而求出點的坐標,代入斜率公式即可求解.【詳解】設點的坐標為,由題意知,焦點,準線方程,所以,解得,把點代入拋物線方程可得,,因為,所以,所以點坐標為,代入斜率公式可得,.故選:A【點睛】本題考查拋物線的性質,考查運算求解能力;屬于基礎題.9、B【解析】
求得雙曲線的一條漸近線方程,設出的坐標,由題意求得,運用直線的斜率公式可得,,,再由等差數(shù)列中項性質和離心率公式,計算可得所求值.【詳解】設雙曲線的一條漸近線方程為,且,由,可得以為圓心,為半徑的圓與漸近線交于,可得,可取,則,設,,則,,,由,,成等差數(shù)列,可得,化為,即,可得,故選:.【點睛】本題考查雙曲線的方程和性質,主要是漸近線方程和離心率,考查方程思想和運算能力,意在考查學生對這些知識的理解掌握水平.10、A【解析】
首先判斷和1的大小關系,再由換底公式和對數(shù)函數(shù)的單調性判斷的大小即可.【詳解】因為,,,所以,綜上可得.故選:A【點睛】本題考查了換底公式和對數(shù)函數(shù)的單調性,考查了推理能力與計算能力,屬于基礎題.11、A【解析】
根據實數(shù)滿足的等量關系,代入后將方程變形,構造函數(shù),并由導函數(shù)求得的最大值;由基本不等式可求得的最小值,結合存在性問題的求法,即可求得正數(shù)的取值范圍.【詳解】函數(shù),,由題意得,即,令,∴,∴在上單調遞增,在上單調遞減,∴,而,當且僅當,即當時,等號成立,∴,∴.故選:A.【點睛】本題考查了導數(shù)在求函數(shù)最值中的應用,由基本不等式求函數(shù)的最值,存在性成立問題的解法,屬于中檔題.12、B【解析】
將所有可能的情況全部枚舉出來,再根據古典概型的方法求解即可.【詳解】設乙,丙,丁分別領到x元,y元,z元,記為,則基本事件有,,,,,,,,,,共10個,其中符合乙獲得“最佳手氣”的有3個,故所求概率為,故選:B.【點睛】本題主要考查了枚舉法求古典概型的方法,屬于基礎題型.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據并集的定義計算即可.【詳解】由集合的并集,知.故答案為:【點睛】本題考查集合的并集運算,屬于容易題.14、5【解析】
由,,且,得,解得,則,則.15、【解析】
建系,設設,由可得,進一步得到的坐標,再利用數(shù)量積的坐標運算即可得到答案.【詳解】以A為坐標原點,AD為x軸建立如圖所示的直角坐標系,設,則,所以,,由,得,即,又,所以,故,,所以.故答案為:2【點睛】本題考查利用坐標法求向量的數(shù)量積,考查學生的運算求解能力,是一道中檔題.16、【解析】
先求出導數(shù),再在定義域上考慮導數(shù)的符號為正時對應的的集合,從而可得函數(shù)的單調增區(qū)間.【詳解】函數(shù)的定義域為.,令,則,故函數(shù)的單調增區(qū)間為:.故答案為:.【點睛】本題考查導數(shù)在函數(shù)單調性中的應用,注意先考慮函數(shù)的定義域,再考慮導數(shù)在定義域上的符號,本題屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ)3.【解析】
(Ⅰ)先求導,得,已知導函數(shù)單調遞增,又在區(qū)間上單調遞增,故,令,求得,討論得,而,故,進而得解;(Ⅱ)可通過必要性探路,當時,由知,又由于,則,當,,結合零點存在定理可判斷必存在使得,得,,化簡得,再由二次函數(shù)性質即可求證;【詳解】(Ⅰ)的定義域為.易知單調遞增,由題意有.令,則.令得.所以當時,單調遞增;當時,單調遞減.所以,而又有,因此,所以.(Ⅱ)由知,又由于,則.下面證明符合條件.若.所以.易知單調遞增,而,,因此必存在使得,即.且當時,單調遞減;當時,,單調遞增;則.綜上,的最大值為3.【點睛】本題考查導數(shù)的計算,利用導數(shù)研究函數(shù)的增減性和最值,屬于中檔題18、(1);(2)當時,在上單調遞增,在上單調遞減;當時,在和上單調遞增,在上單調遞減;當時,在上單調遞增;當時,在和上單調遞增,在上單調遞減.【解析】
(1)根據導數(shù)的幾何意義求解即可.(2)易得函數(shù)定義域是,且.故分,和與四種情況,分別分析得極值點的關系進而求得原函數(shù)的單調性即可.【詳解】(1)當時,,則切線的斜率為.又,則曲線在點的切線方程是,即.(2)的定義域是..①當時,,所以當時,;當時,,所以在上單調遞增,在上單調遞減;②當時,,所以當和時,;當時,,所以在和上單調遞增,在上單調遞減;③當時,,所以在上恒成立.所以在上單調遞增;④當時,,所以和時,;時,.所以在和上單調遞增,在上單調遞減.綜上所述,當時,在上單調遞增,在上單調遞減;當時,在和上單調遞增,在上單調遞減;當時,在上單調遞增;當時,在和上單調遞增,在上單調遞減.【點睛】本題主要考查了導數(shù)的幾何意義以及含參數(shù)的函數(shù)單調性討論,需要根據題意求函數(shù)的極值點,再根據極值點的大小關系分類討論即可.屬于??碱}.19、(Ⅰ)詳見解析;(Ⅱ)①;②數(shù)學期望為6,方差為2.4.【解析】
(1)完成列聯(lián)表,由列聯(lián)表,得,由此能在犯錯誤的概率不超過0.01的前提下認為我市市民網購與性別有關.(2)①由題意所抽取的10名女市民中,經常網購的有人,偶爾或不用網購的有人,由此能選取的3人中至少有2人經常網購的概率.②由列聯(lián)表可知,抽到經常網購的市民的頻率為:,由題意,由此能求出隨機變量的數(shù)學期望和方差.【詳解】解:(1)完成列聯(lián)表(單位:人):經常網購偶爾或不用網購合計男性5050100女性7030100合計12080200由列聯(lián)表,得:,∴能在犯錯誤的概率不超過0.01的前提下認為我市市民網購與性別有關.(2)①由題意所抽取的10名女市民中,經常網購的有人,偶爾或不用網購的有人,∴選取的3人中至少有2人經常網購的概率為:.②由列聯(lián)表可知,抽到經常網購的市民的頻率為:,將頻率視為概率,∴從我市市民中任意抽取一人,恰好抽到經常網購市民的概率為0.6,由題意,∴隨機變量的數(shù)學期望,方差D(X)=.【點睛】本題考查獨立檢驗的應用,考查概率、離散型隨機變量的分布列、數(shù)學期望、方差的求法,考查古典
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 文化課程設計總結
- 幼兒服裝課程設計
- 安裝電氣課程設計
- 幼兒蘆葦課程設計
- 《挑戰(zhàn)性壓力源與阻礙性壓力源對員工滿意度的影響研究》
- 《坎地沙坦酯混合膠束片制備工藝的研究》
- 《我國文化產業(yè)稅收負擔研究》
- 無源逆變電路課程設計
- 幼兒園愛國繪畫課程設計
- 《冠心病患者血清胱抑素C水平與冠狀動脈病變支數(shù)相關性研究》
- 創(chuàng)新工程實踐智慧樹知到期末考試答案章節(jié)答案2024年北京大學等跨校共建
- 個體工商戶設立(變更)登記審核表
- 聚苯板外墻外保溫系統(tǒng)驗收及檢驗細則
- 世界地圖中文版本全集(高清版)
- 世界旅游夏威夷英文介紹簡介English introduction of Hawaii(課堂PPT)
- 彩色學生電子小報手抄報模板消防安全2
- 安全生產中長期規(guī)劃
- 淺談初中數(shù)學教學中拔尖生的培養(yǎng)策略
- JGJT231-2021規(guī)范解讀
- 日標歐標英標O型圈匯總
- 不合格品及糾正措施處理單(表格模板、doc格式)
評論
0/150
提交評論