高中數(shù)學(xué)高考用點(diǎn)差法解圓錐曲線(xiàn)的中點(diǎn)弦問(wèn)題人教版(通用)_第1頁(yè)
高中數(shù)學(xué)高考用點(diǎn)差法解圓錐曲線(xiàn)的中點(diǎn)弦問(wèn)題人教版(通用)_第2頁(yè)
高中數(shù)學(xué)高考用點(diǎn)差法解圓錐曲線(xiàn)的中點(diǎn)弦問(wèn)題人教版(通用)_第3頁(yè)
高中數(shù)學(xué)高考用點(diǎn)差法解圓錐曲線(xiàn)的中點(diǎn)弦問(wèn)題人教版(通用)_第4頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、用點(diǎn)差分法求解圓錐曲線(xiàn)中點(diǎn)弦的問(wèn)題與圓錐曲線(xiàn)弦中點(diǎn)相關(guān)的問(wèn)題稱(chēng)為圓錐曲線(xiàn)中點(diǎn)弦問(wèn)題。解決圓錐曲線(xiàn)中點(diǎn)弦問(wèn)題的一般方法是利用聯(lián)立直線(xiàn)和圓錐曲線(xiàn)的方程、一元二次方程的根判別、根與系數(shù)的關(guān)系、中點(diǎn)坐標(biāo)公式和參數(shù)方法進(jìn)行求解。直線(xiàn)和圓錐曲線(xiàn)的交點(diǎn)(弦的端點(diǎn))坐標(biāo)為、我們把這種代溝的方法稱(chēng)為“逐次法”。本文采用這種方法探討故障診斷。第一,具有以點(diǎn)為中點(diǎn)的弦的直線(xiàn)的方程式例1,通過(guò)橢圓內(nèi)的一點(diǎn)吸引弦,用點(diǎn)平分弦,求出這個(gè)弦所在的吳宣儀方程。解法:將線(xiàn)與橢圓的交點(diǎn),的重點(diǎn)另外,如果橢圓上有兩個(gè)點(diǎn),糧食減產(chǎn)所以也就是說(shuō),求直線(xiàn)的方程式是。示例2,已知雙曲,通過(guò)點(diǎn)是否可以是直線(xiàn),與雙曲線(xiàn)相交,點(diǎn)是段的中點(diǎn)。如果

2、有這樣的直線(xiàn),就求出那個(gè)方程,如果不存在,就說(shuō)明原因。策略:這是探索性的練習(xí)。一般的方法是假設(shè)這種直線(xiàn)存在,并確認(rèn)它是否符合設(shè)置問(wèn)題的條件。這個(gè)問(wèn)題屬于重點(diǎn)縣問(wèn)題,必須考慮逐步法或韋達(dá)定理。解決方案:有一個(gè)用點(diǎn)平分的弦,然后,而且,減去糧食就能得到所以直線(xiàn)由除去,得到這表明,由于直線(xiàn)不與雙曲線(xiàn)相交,所以用點(diǎn)平分的弦不存在。也就是說(shuō),這種直線(xiàn)不存在。評(píng)論:這個(gè)問(wèn)題如果忽視對(duì)判別式的考察,會(huì)得到錯(cuò)誤的結(jié)果,請(qǐng)小心??梢钥闯?,這個(gè)問(wèn)題在重點(diǎn)縣問(wèn)題上,判斷點(diǎn)的位置很重要。(1)如果中點(diǎn)在圓錐曲線(xiàn)內(nèi),則通常存在由點(diǎn)平分的弦。(2)如果中點(diǎn)在圓錐曲線(xiàn)之外,則點(diǎn)平分的弦可能不存在。第二,通過(guò)點(diǎn)的弦和平行弦的

3、中點(diǎn)坐標(biāo)和中點(diǎn)軌跡范例3,已知橢圓的弦坡度比為3,直線(xiàn)與吳宣儀的交點(diǎn)正好取得此弦中點(diǎn)的座標(biāo)。解法:弦端點(diǎn),設(shè)定弦中點(diǎn)而且,另外,糧食減產(chǎn)也就是說(shuō)也就是說(shuō)點(diǎn)的坐標(biāo)為。范例4,已知橢圓取得斜度為3的弦中點(diǎn)的軌跡方程式。解法:弦端點(diǎn),設(shè)定弦中點(diǎn)而且,另外,糧食減產(chǎn)也就是說(shuō)也就是說(shuō)是的,是的。點(diǎn)在橢圓內(nèi)斜率為3的弦中點(diǎn)的軌跡方程如下第三,求出與中點(diǎn)弦相關(guān)的圓錐曲線(xiàn)的方程。例5,已知中心位于原點(diǎn),具有焦點(diǎn)的橢圓是直線(xiàn)裁剪的弦的中點(diǎn)的橫坐標(biāo)是求橢圓的方程。解決方案:設(shè)置橢圓的方程式如下弦端點(diǎn),設(shè)定弦的中點(diǎn),另外,糧食減產(chǎn)也就是說(shuō)。聯(lián)立 解決,求橢圓的方程式是四、直線(xiàn)對(duì)稱(chēng)問(wèn)題的圓錐曲線(xiàn)的兩點(diǎn)示例6,確定已知橢圓、值的范圍,以使橢圓上的兩個(gè)其他點(diǎn)始終關(guān)于該直線(xiàn)對(duì)稱(chēng)(如果吳宣儀)。解法:設(shè)定,橢圓上線(xiàn)的兩個(gè)對(duì)稱(chēng)點(diǎn),弦的中點(diǎn),表格可

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論