高中數(shù)學 第二章 基本初等函數(shù)(Ⅰ)2.2 對數(shù)函數(shù) 2.2.2 對數(shù)函數(shù)及其性質(zhì) 第1課時 對數(shù)函數(shù)的圖象和性質(zhì)課件 新人教A版必修1_第1頁
高中數(shù)學 第二章 基本初等函數(shù)(Ⅰ)2.2 對數(shù)函數(shù) 2.2.2 對數(shù)函數(shù)及其性質(zhì) 第1課時 對數(shù)函數(shù)的圖象和性質(zhì)課件 新人教A版必修1_第2頁
高中數(shù)學 第二章 基本初等函數(shù)(Ⅰ)2.2 對數(shù)函數(shù) 2.2.2 對數(shù)函數(shù)及其性質(zhì) 第1課時 對數(shù)函數(shù)的圖象和性質(zhì)課件 新人教A版必修1_第3頁
高中數(shù)學 第二章 基本初等函數(shù)(Ⅰ)2.2 對數(shù)函數(shù) 2.2.2 對數(shù)函數(shù)及其性質(zhì) 第1課時 對數(shù)函數(shù)的圖象和性質(zhì)課件 新人教A版必修1_第4頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、2 2.2 2.2 2對數(shù)函數(shù)及其性質(zhì) 第1 1課時對數(shù)函數(shù)的圖象和性質(zhì) 1.掌握對數(shù)函數(shù)的概念,會判斷對數(shù)函數(shù). 2.初步掌握對數(shù)函數(shù)的圖象和性質(zhì). 3.能利用對數(shù)函數(shù)的性質(zhì)解決與對數(shù)函數(shù)有關(guān)的定義域、定點 問題. 123 1.對數(shù)函數(shù)的定義 一般地,我們把函數(shù)y=logax(a0,且a1)叫做對數(shù)函數(shù),其中x是自 變量,函數(shù)的定義域是(0,+). 歸納總結(jié)歸納總結(jié)1.由于指數(shù)函數(shù)y=ax中的底數(shù)a滿足a0,且a1,則對數(shù) 函數(shù)y=logax中的底數(shù)a也必須滿足a0,且a1. 2.對數(shù)函數(shù)的解析式同時滿足:(1)對數(shù)符號前面的系數(shù)是1;(2)對 數(shù)的底數(shù)是不等于1的正實數(shù)(常數(shù));(3)對數(shù)

2、的真數(shù)僅有自變量x. 123 2.對數(shù)函數(shù)的圖象和性質(zhì) 一般地,對數(shù)函數(shù)y=logax(a0,且a1)的圖象和性質(zhì)如下表所示: 123 歸納總結(jié)歸納總結(jié)對數(shù)函數(shù)的知識總結(jié): 對數(shù)增減有思路,函數(shù)圖象看底數(shù); 底數(shù)只能大于0,等于1來可不行; 底數(shù)若是大于1,圖象從下往上增; 底數(shù)0到1之間,圖象從上往下減; 無論函數(shù)增和減,圖象都過(1,0)點. 123 【做一做2-1】 函數(shù)y=log4.3x的值域是() A.(0,+)B.(1,+) C.(-,0)D.R 答案:D 123 3.反函數(shù) 對數(shù)函數(shù)y=logax(a0,且a1)和指數(shù)函數(shù)y=ax(a0,且a1)互為反 函數(shù).它們的圖象關(guān)于直線y

3、=x對稱. 【做一做3】 函數(shù)y=ln x的反函數(shù)是. 答案:y=ex 對數(shù)函數(shù)和指數(shù)函數(shù)的區(qū)別與聯(lián)系 剖析:將對數(shù)函數(shù)和指數(shù)函數(shù)的性質(zhì)對比列表如下: 題型一題型二題型三題型四 【例1】 下列函數(shù)中,哪些是對數(shù)函數(shù)? (1)y=logax2(a0,且a1); (2)y=log2x-1; (3)y=2log8x; (4)y=logxa(x0,且x1); (5)y=log5x. 分析:根據(jù)對數(shù)函數(shù)的定義進行判斷. 題型一題型二題型三題型四 解:只有(5)為對數(shù)函數(shù). (1)中真數(shù)不是自變量x,故不是對數(shù)函數(shù); (2)中對數(shù)式后減1,故不是對數(shù)函數(shù); (3)中l(wèi)og8x前的系數(shù)是2,而不是1, 故不

4、是對數(shù)函數(shù); (4)中底數(shù)是自變量x,而非常數(shù)a,故不是對數(shù)函數(shù). 題型一題型二題型三題型四 【變式訓練1】 若函數(shù)f(x)=(a2-a+1)log(a+1)x是對數(shù)函數(shù),則實數(shù) a=. 解得a=1. 答案:1 題型一題型二題型三題型四 解得x0的x的取值范圍. 題型一題型二題型三題型四 題型一題型二題型三題型四 【例3】 已知函數(shù)f(x)=loga(x+1)+1(a0,且a1)的圖象恒過定點 P,則點P的坐標是. 解析:令x+1=1,得x=0, 則f(0)=loga1+1=1,即定點P的坐標為(0,1). 答案:(0,1) 反思反思函數(shù)f(x)=klogag(x)+b(a0,且a1)的圖象恒過定點P,若 g(m)=1,則定點P的坐標為(m,b). 題型一題型二題型三題型四 題型一題型二題型三題型四 易錯點忽略對數(shù)函數(shù)的定義域致錯 【例4】 已知函數(shù)y=f(x),x,y滿足關(guān)系式lg(lg y)=lg(3-x),求函數(shù) y=f(x)的表達式及定義域、值域. 錯解:lg(lg y)=lg(3-x),lg y=3-x, y=103-x,定義域為R,值域為(0,+). 題型一題型二題型三題型四 正解:lg(lg y)=lg(3-x), y103-3=1, y=f(x)的定義域為(-,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論