版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、第一章 行列式 1. 利用對(duì)角線法則計(jì)算下列三階行列式: (1); 解 =2´(-4)´3+0´(-1)´(-1)+1´1´8 -0´1´3-2´(-1)´8-1´(-4)´(-1) =-24+8+16-4=-4. (2); 解 =acb+bac+cba-bbb-aaa-ccc =3abc-a3-b3-c3. (3); 解 =bc2+ca2+ab2-ac2-ba2-cb2 =(a-b)(b-c)(c-a). (4). 解 =x(x+y)y+yx(x+y)+(x+y)yx-y3
2、-(x+y)3-x3 =3xy(x+y)-y3-3x2 y-x3-y3-x3 =-2(x3+y3). 2. 按自然數(shù)從小到大為標(biāo)準(zhǔn)次序, 求下列各排列的逆序數(shù): (1)1 2 3 4; 解 逆序數(shù)為0 (2)4 1 3 2; 解 逆序數(shù)為4: 41, 43, 42, 32. (3)3 4 2 1; 解 逆序數(shù)為5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3; 解 逆序數(shù)為3: 2 1, 4 1, 4 3. (5)1 3 × × × (2n-1) 2 4 × × × (2n); 解 逆序數(shù)為: 3 2 (1
3、個(gè)) 5 2, 5 4(2個(gè)) 7 2, 7 4, 7 6(3個(gè)) × × × × × × (2n-1)2, (2n-1)4, (2n-1)6, × × ×, (2n-1)(2n-2) (n-1個(gè)) (6)1 3 × × × (2n-1) (2n) (2n-2) × × × 2. 解 逆序數(shù)為n(n-1) : 3 2(1個(gè)) 5 2, 5 4 (2個(gè)) × × × × × × (2n-1
4、)2, (2n-1)4, (2n-1)6, × × ×, (2n-1)(2n-2) (n-1個(gè)) 4 2(1個(gè)) 6 2, 6 4(2個(gè)) × × × × × × (2n)2, (2n)4, (2n)6, × × ×, (2n)(2n-2) (n-1個(gè)) 3. 寫出四階行列式中含有因子a11a23的項(xiàng). 解 含因子a11a23的項(xiàng)的一般形式為(-1)ta11a23a3ra4s,其中rs是2和4構(gòu)成的排列, 這種排列共有兩個(gè), 即24和42. 所以含因子a11a23的項(xiàng)分別是
5、(-1)ta11a23a32a44=(-1)1a11a23a32a44=-a11a23a32a44, (-1)ta11a23a34a42=(-1)2a11a23a34a42=a11a23a34a42. 4. 計(jì)算下列各行列式: (1); 解 . (2); 解 . (3); 解 . (4). 解 =abcd+ab+cd+ad+1. 5. 證明: (1)=(a-b)3; 證明 =(a-b)3 . (2); 證明 . (3); 證明 (c4-c3, c3-c2, c2-c1得) (c4-c3, c3-c2得) . (4) =(a-b)(a-c)(a-d)(b-c)(b-d)(c-d)(a+b+c+d
6、); 證明 =(a-b)(a-c)(a-d)(b-c)(b-d)(c-d)(a+b+c+d). (5)=xn+a1xn-1+ × × × +an-1x+an . 證明 用數(shù)學(xué)歸納法證明. 當(dāng)n=2時(shí), , 命題成立. 假設(shè)對(duì)于(n-1)階行列式命題成立, 即 Dn-1=xn-1+a1 xn-2+ × × × +an-2x+an-1, 則Dn按第一列展開(kāi), 有 =xD n-1+an=xn+a1xn-1+ × × × +an-1x+an . 因此, 對(duì)于n階行列式命題成立. 6. 設(shè)n階行列式D=det(ai
7、j), 把D上下翻轉(zhuǎn)、或逆時(shí)針旋轉(zhuǎn)90°、或依副對(duì)角線翻轉(zhuǎn), 依次得 , , , 證明, D3=D . 證明因?yàn)镈=det(aij), 所以 . 同理可證 . . 7. 計(jì)算下列各行列式(Dk為k階行列式): (1), 其中對(duì)角線上元素都是a, 未寫出的元素都是0; 解 (按第n行展開(kāi)) =an-an-2=an-2(a2-1). (2); 解 將第一行乘(-1)分別加到其余各行, 得 , 再將各列都加到第一列上, 得 =x+(n-1)a(x-a)n-1. (3); 解 根據(jù)第6題結(jié)果, 有 此行列式為范德蒙德行列式. . (4); 解 (按第1行展開(kāi)) . 再按最后一行展開(kāi)得遞推公式
8、 D2n=andnD2n-2-bncnD2n-2, 即D2n=(andn-bncn)D2n-2. 于是 . 而 , 所以 . (5) D=det(aij), 其中aij=|i-j|; 解 aij=|i-j|, =(-1)n-1(n-1)2n-2. (6), 其中a1a2 × × × an¹0. 解 . 8. 用克萊姆法則解下列方程組: (1); 解 因?yàn)?, , , , ,所以 , , , . (2). 解 因?yàn)?, , , , , , 所以, , , , . 9. 問(wèn)l, m取何值時(shí), 齊次線性方程組有非零解? 解 系數(shù)行列式為 . 令D=0, 得 m=0或l=1. 于是, 當(dāng)m=0或l=1時(shí)該齊次線性方程組有非零解. 10. 問(wèn)l取何值時(shí), 齊次線性
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 委托托管協(xié)議書
- 2025版新能源產(chǎn)品銷售合同標(biāo)準(zhǔn)模板
- 2025年度熱鍍鋅鋼管銷售合同范本2篇
- 二零二五年度企業(yè)財(cái)務(wù)報(bào)表編制與分析合同范本3篇
- 2025年度體育場(chǎng)館教練個(gè)人聘用合同示例4篇
- 2025年度二手房全款買賣合同房產(chǎn)交易風(fēng)險(xiǎn)提示協(xié)議
- 2025年度城市綜合體商業(yè)空間租賃及品牌入駐協(xié)議
- 跨領(lǐng)域的安全逃生技巧探索
- 綠色能源在農(nóng)業(yè)機(jī)械中的運(yùn)用前景
- 智能家居時(shí)代下的家用醫(yī)療設(shè)備選擇
- 康復(fù)醫(yī)學(xué)治療技術(shù)(士)復(fù)習(xí)題及答案
- 完整版100以內(nèi)加減法混合運(yùn)算4000道100
- 2024年產(chǎn)權(quán)管理部年終工作總結(jié)例文(3篇)
- 《血管性血友病》課件
- 高三日語(yǔ)一輪復(fù)習(xí)日語(yǔ)助詞「に」和「を」的全部用法課件
- 機(jī)場(chǎng)地勤勞動(dòng)合同三篇
- 2024年山東省高考政治試卷真題(含答案逐題解析)
- 《用銳角三角函數(shù)解決問(wèn)題(3)》參考課件
- 訂婚協(xié)議書手寫模板攻略
- 風(fēng)水學(xué)的基礎(chǔ)知識(shí)培訓(xùn)
- 施工組織設(shè)計(jì)方案針對(duì)性、完整性
評(píng)論
0/150
提交評(píng)論