版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、2021-2022高考數(shù)學(xué)模擬試卷考生請(qǐng)注意:1答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1由曲線圍成的封閉圖形的面積為( )ABCD2一個(gè)幾何體的三視圖如圖所示,則該幾何體的表面積為( )ABCD843已知函數(shù)的定義域?yàn)?,則函數(shù)的定義域?yàn)椋?)ABCD4已知雙曲線 (a0,
2、b0)的右焦點(diǎn)為F,若過點(diǎn)F且傾斜角為60的直線l與雙曲線的右支有且只有一個(gè)交點(diǎn),則此雙曲線的離心率e的取值范圍是( )AB(1,2),CD5如圖所示,在平面直角坐標(biāo)系中,是橢圓的右焦點(diǎn),直線與橢圓交于,兩點(diǎn),且,則該橢圓的離心率是( )ABCD6執(zhí)行如圖所示的程序框圖,則輸出的值為( )ABCD7若ab0,0c1,則AlogaclogbcBlogcalogcbCacbc Dcacb8五名志愿者到三個(gè)不同的單位去進(jìn)行幫扶,每個(gè)單位至少一人,則甲、乙兩人不在同一個(gè)單位的概率為( )ABCD9已知函數(shù)(),若函數(shù)在上有唯一零點(diǎn),則的值為( )A1B或0C1或0D2或010如圖,矩形ABCD中,E是
3、AD的中點(diǎn),將沿BE折起至,記二面角的平面角為,直線與平面BCDE所成的角為,與BC所成的角為,有如下兩個(gè)命題:對(duì)滿足題意的任意的的位置,;對(duì)滿足題意的任意的的位置,則( ) A命題和命題都成立B命題和命題都不成立C命題成立,命題不成立D命題不成立,命題成立11已知正四面體的內(nèi)切球體積為v,外接球的體積為V,則( )A4B8C9D2712一個(gè)正四棱錐形骨架的底邊邊長為,高為,有一個(gè)球的表面與這個(gè)正四棱錐的每個(gè)邊都相切,則該球的表面積為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13已知向量,則_.14已知函數(shù)與的圖象上存在關(guān)于軸對(duì)稱的點(diǎn),則的取值范圍為_15已知圓C:經(jīng)過拋物
4、線E:的焦點(diǎn),則拋物線E的準(zhǔn)線與圓C相交所得弦長是_.16在平面直角坐標(biāo)系中,點(diǎn)在單位圓上,設(shè),且若,則的值為_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)如圖,三棱柱ABC-A1B1C1中,側(cè)面BCC1B1是菱形,AC=BC=2,CBB1=,點(diǎn)A在平面BCC1B1上的投影為棱BB1的中點(diǎn)E(1)求證:四邊形ACC1A1為矩形;(2)求二面角E-B1C-A1的平面角的余弦值18(12分)已知函數(shù)f(x)=x-1+x+2,記f(x)的最小值為m.()解不等式f(x)5;()若正實(shí)數(shù)a,b滿足1a+1b=5,求證:2a2+3b22m.19(12分)如圖,已知在三棱
5、臺(tái)中,.(1)求證:;(2)過的平面分別交,于點(diǎn),且分割三棱臺(tái)所得兩部分幾何體的體積比為,幾何體為棱柱,求的長.提示:臺(tái)體的體積公式(,分別為棱臺(tái)的上、下底面面積,為棱臺(tái)的高).20(12分)2019年安慶市在大力推進(jìn)城市環(huán)境、人文精神建設(shè)的過程中,居民生活垃圾分類逐漸形成意識(shí).有關(guān)部門為宣傳垃圾分類知識(shí),面向該市市民進(jìn)行了一次“垃圾分類知識(shí)的網(wǎng)絡(luò)問卷調(diào)查,每位市民僅有一次參與機(jī)會(huì),通過抽樣,得到參與問卷調(diào)查中的1000人的得分?jǐn)?shù)據(jù),其頻率分布直方圖如圖:(1)由頻率分布直方圖可以認(rèn)為,此次問卷調(diào)查的得分Z服從正態(tài)分布,近似為這1000人得分的平均值(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表),利用該
6、正態(tài)分布,求P();(2)在(1)的條件下,有關(guān)部門為此次參加問卷調(diào)查的市民制定如下獎(jiǎng)勵(lì)方案:(i)得分不低于可獲贈(zèng)2次隨機(jī)話費(fèi),得分低于則只有1次:(ii)每次贈(zèng)送的隨機(jī)話費(fèi)和對(duì)應(yīng)概率如下:贈(zèng)送話費(fèi)(單位:元)1020概率現(xiàn)有一位市民要參加此次問卷調(diào)查,記X(單位:元)為該市民參加問卷調(diào)查獲贈(zèng)的話費(fèi),求X的分布列.附:,若,則,.21(12分)在等比數(shù)列中,已知,.設(shè)數(shù)列的前n項(xiàng)和為,且,(,).(1)求數(shù)列的通項(xiàng)公式;(2)證明:數(shù)列是等差數(shù)列;(3)是否存在等差數(shù)列,使得對(duì)任意,都有?若存在,求出所有符合題意的等差數(shù)列;若不存在,請(qǐng)說明理由.22(10分)如圖,矩形和梯形所在的平面互相垂
7、直,.(1)若為的中點(diǎn),求證:平面;(2)若,求四棱錐的體積.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1A【解析】先計(jì)算出兩個(gè)圖像的交點(diǎn)分別為,再利用定積分算兩個(gè)圖形圍成的面積.【詳解】封閉圖形的面積為.選A.【點(diǎn)睛】本題考察定積分的應(yīng)用,屬于基礎(chǔ)題.解題時(shí)注意積分區(qū)間和被積函數(shù)的選取.2B【解析】畫出幾何體的直觀圖,計(jì)算表面積得到答案.【詳解】該幾何體的直觀圖如圖所示:故.故選:.【點(diǎn)睛】本題考查了根據(jù)三視圖求表面積,意在考查學(xué)生的計(jì)算能力和空間想象能力.3A【解析】試題分析:由題意,得,解得,故選A考點(diǎn):函數(shù)的定義域4A
8、【解析】若過點(diǎn)且傾斜角為的直線與雙曲線的右支有且只有一個(gè)交點(diǎn),則該直線的斜率的絕對(duì)值小于等于漸近線的斜率根據(jù)這個(gè)結(jié)論可以求出雙曲線離心率的取值范圍【詳解】已知雙曲線的右焦點(diǎn)為,若過點(diǎn)且傾斜角為的直線與雙曲線的右支有且只有一個(gè)交點(diǎn),則該直線的斜率的絕對(duì)值小于等于漸近線的斜率,離心率,故選:【點(diǎn)睛】本題考查雙曲線的性質(zhì)及其應(yīng)用,解題時(shí)要注意挖掘隱含條件5A【解析】聯(lián)立直線方程與橢圓方程,解得和的坐標(biāo),然后利用向量垂直的坐標(biāo)表示可得,由離心率定義可得結(jié)果.【詳解】由,得,所以,.由題意知,所以,.因?yàn)?所以,所以.所以,所以,故選:A.【點(diǎn)睛】本題考查了直線與橢圓的交點(diǎn),考查了向量垂直的坐標(biāo)表示,考
9、查了橢圓的離心率公式,屬于基礎(chǔ)題.6B【解析】列出每一次循環(huán),直到計(jì)數(shù)變量滿足退出循環(huán).【詳解】第一次循環(huán):;第二次循環(huán):;第三次循環(huán):,退出循環(huán),輸出的為.故選:B.【點(diǎn)睛】本題考查由程序框圖求輸出的結(jié)果,要注意在哪一步退出循環(huán),是一道容易題.7B【解析】試題分析:對(duì)于選項(xiàng)A,而,所以,但不能確定的正負(fù),所以它們的大小不能確定;對(duì)于選項(xiàng)B,,,兩邊同乘以一個(gè)負(fù)數(shù)改變不等號(hào)方向,所以選項(xiàng)B正確;對(duì)于選項(xiàng)C,利用在第一象限內(nèi)是增函數(shù)即可得到,所以C錯(cuò)誤;對(duì)于選項(xiàng)D,利用在上為減函數(shù)易得,所以D錯(cuò)誤.所以本題選B.【考點(diǎn)】指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的性質(zhì)【名師點(diǎn)睛】比較冪或?qū)?shù)值的大小,若冪的底數(shù)相同或?qū)?/p>
10、數(shù)的底數(shù)相同,通常利用指數(shù)函數(shù)或?qū)?shù)函數(shù)的單調(diào)性進(jìn)行比較;若底數(shù)不同,可考慮利用中間量進(jìn)行比較.8D【解析】三個(gè)單位的人數(shù)可能為2,2,1或3,1,1,求出甲、乙兩人在同一個(gè)單位的概率,利用互為對(duì)立事件的概率和為1即可解決.【詳解】由題意,三個(gè)單位的人數(shù)可能為2,2,1或3,1,1;基本事件總數(shù)有種,若為第一種情況,且甲、乙兩人在同一個(gè)單位,共有種情況;若為第二種情況,且甲、乙兩人在同一個(gè)單位,共有種,故甲、乙兩人在同一個(gè)單位的概率為,故甲、乙兩人不在同一個(gè)單位的概率為.故選:D.【點(diǎn)睛】本題考查古典概型的概率公式的計(jì)算,涉及到排列與組合的應(yīng)用,在正面情況較多時(shí),可以先求其對(duì)立事件,即甲、乙兩
11、人在同一個(gè)單位的概率,本題有一定難度.9C【解析】求出函數(shù)的導(dǎo)函數(shù),當(dāng)時(shí),只需,即,令,利用導(dǎo)數(shù)求其單調(diào)區(qū)間,即可求出參數(shù)的值,當(dāng)時(shí),根據(jù)函數(shù)的單調(diào)性及零點(diǎn)存在性定理可判斷;【詳解】解:(),當(dāng)時(shí),由得,則在上單調(diào)遞減,在上單調(diào)遞增,所以是極小值,只需,即.令,則,函數(shù)在上單調(diào)遞增.,;當(dāng)時(shí),函數(shù)在上單調(diào)遞減,函數(shù)在上有且只有一個(gè)零點(diǎn),的值是1或0.故選:C【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的零點(diǎn)問題,零點(diǎn)存在性定理的應(yīng)用,屬于中檔題.10A【解析】作出二面角的補(bǔ)角、線面角、線線角的補(bǔ)角,由此判斷出兩個(gè)命題的正確性.【詳解】如圖所示,過作平面,垂足為,連接,作,連接.由圖可知,所以,所以正確.由
12、于,所以與所成角,所以,所以正確.綜上所述,都正確.故選:A【點(diǎn)睛】本題考查了折疊問題、空間角、數(shù)形結(jié)合方法,考查了推理能力與計(jì)算能力,屬于中檔題11D【解析】設(shè)正四面體的棱長為,取的中點(diǎn)為,連接,作正四面體的高為,首先求出正四面體的體積,再利用等體法求出內(nèi)切球的半徑,在中,根據(jù)勾股定理求出外接球的半徑,利用球的體積公式即可求解.【詳解】設(shè)正四面體的棱長為,取的中點(diǎn)為,連接,作正四面體的高為,則,設(shè)內(nèi)切球的半徑為,內(nèi)切球的球心為,則,解得:;設(shè)外接球的半徑為,外接球的球心為,則或,在中,由勾股定理得:,解得, 故選:D【點(diǎn)睛】本題主要考查了多面體的內(nèi)切球、外接球問題,考查了椎體的體積公式以及球
13、的體積公式,需熟記幾何體的體積公式,屬于基礎(chǔ)題.12B【解析】根據(jù)正四棱錐底邊邊長為,高為,得到底面的中心到各棱的距離都是1,從而底面的中心即為球心.【詳解】如圖所示:因?yàn)檎睦忮F底邊邊長為,高為,所以 , 到 的距離為,同理到 的距離為1,所以為球的球心,所以球的半徑為:1,所以球的表面積為.故選:B【點(diǎn)睛】本題主要考查組合體的表面積,還考查了空間想象的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。132【解析】由得,算出,再代入算出即可.【詳解】,解得:,則.故答案為:2【點(diǎn)睛】本題主要考查了向量的坐標(biāo)運(yùn)算,向量垂直的性質(zhì),向量的模的計(jì)算.14【解析】?jī)珊瘮?shù)圖象上存在關(guān)
14、于軸對(duì)稱的點(diǎn)的等價(jià)命題是方程在區(qū)間上有解,化簡(jiǎn)方程在區(qū)間上有解,構(gòu)造函數(shù),求導(dǎo),求出單調(diào)區(qū)間,利用函數(shù)性質(zhì)得解.【詳解】解:根據(jù)題意,若函數(shù)與的圖象上存在關(guān)于軸對(duì)稱的點(diǎn),則方程在區(qū)間上有解,即方程在區(qū)間上有解,設(shè)函數(shù),其導(dǎo)數(shù),又由,可得:當(dāng)時(shí), 為減函數(shù),當(dāng)時(shí), 為增函數(shù),故函數(shù)有最小值,又由;比較可得: ,故函數(shù)有最大值,故函數(shù)在區(qū)間上的值域?yàn)?;若方程在區(qū)間上有解,必有,則有,即的取值范圍是;故答案為:;【點(diǎn)睛】本題利用導(dǎo)數(shù)研究函數(shù)在某區(qū)間上最值求參數(shù)的問題, 函數(shù)零點(diǎn)問題的拓展. 由于函數(shù)的零點(diǎn)就是方程的根,在研究方程的有關(guān)問題時(shí),可以將方程問題轉(zhuǎn)化為函數(shù)問題解決. 此類問題的切入點(diǎn)是借助
15、函數(shù)的零點(diǎn),結(jié)合函數(shù)的圖象,采用數(shù)形結(jié)合思想加以解決.15【解析】求出拋物線的焦點(diǎn)坐標(biāo),代入圓的方程,求出的值,再求出準(zhǔn)線方程,利用點(diǎn)到直線的距離公式,求出弦心距,利用勾股定理可以求出弦長的一半,進(jìn)而求出弦長【詳解】拋物線E: 的準(zhǔn)線為,焦點(diǎn)為(0,1),把焦點(diǎn)的坐標(biāo)代入圓的方程中,得,所以圓心的坐標(biāo)為,半徑為5,則圓心到準(zhǔn)線的距離為1,所以弦長【點(diǎn)睛】本題考查了拋物線的準(zhǔn)線、圓的弦長公式16【解析】根據(jù)三角函數(shù)定義表示出,由同角三角函數(shù)關(guān)系式結(jié)合求得,而,展開后即可由余弦差角公式求得的值.【詳解】點(diǎn)在單位圓上,設(shè),由三角函數(shù)定義可知,因?yàn)?,則,所以由同角三角函數(shù)關(guān)系式可得,所以 故答案為:.
16、【點(diǎn)睛】本題考查了三角函數(shù)定義,同角三角函數(shù)關(guān)系式的應(yīng)用,余弦差角公式的應(yīng)用,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1)見解析(2)【解析】(1)通過勾股定理得出,又,進(jìn)而可得平面,則可得到,問題得證;(2)如圖,以為原點(diǎn),所在直線分別為軸,軸,軸,求出平面的法向量和平面的法向量,利用空間向量的夾角公式可得答案.【詳解】(1)因?yàn)槠矫妫裕?又因?yàn)?,所以,因此,所以?因此平面,所以,從而,又四邊形為平行四邊形,則四邊形為矩形;(2)如圖,以為原點(diǎn),所在直線分別為軸,軸,軸,所以,平面的法向量,設(shè)平面的法向量, 由,由,令,即, 所以,所以,所求二面
17、角的余弦值是.【點(diǎn)睛】本題考查空間垂直關(guān)系的證明,考查向量法求二面角的大小,考查學(xué)生計(jì)算能力,是中檔題.18()x|-3x2()見證明【解析】()由題意結(jié)合不等式的性質(zhì)零點(diǎn)分段求解不等式的解集即可;()首先確定m的值,然后利用柯西不等式即可證得題中的不等式.【詳解】()當(dāng)x1時(shí),f(x)=(x-1)+(x+2)=2x+15,即x2,1x2;當(dāng)-2x1時(shí),f(x)=(1-x)+(x+2)=35,-2x1;當(dāng)x-2時(shí),f(x)=(1-x)-(x+2)=-2x-15,即x-3,-3x-2.綜上所述,原不等式的解集為x|-3x2.()f(x)=x-1+x+2(x-1)-(x+2)=3,當(dāng)且僅當(dāng)-2x1
18、時(shí),等號(hào)成立.f(x)的最小值m=3.(2a)2+(3b)2(12)2+(13)2(2a12+3b13)2=5,即2a2+3b26,當(dāng)且僅當(dāng)2a13=3b12即3a=2b時(shí),等號(hào)成立.又1a+1b=5,a=53,b=52時(shí),等號(hào)成立.2a2+3b22m.【點(diǎn)睛】本題主要考查絕對(duì)值不等式的解法,柯西不等式及其應(yīng)用,絕對(duì)值三角不等式求最值的方法等知識(shí),意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.19(1)證明見解析;(2)2【解析】(1)在中,利用勾股定理,證得,又由題設(shè)條件,得到,利用線面垂直的判定定理,證得平面,進(jìn)而得到;(2)設(shè)三棱臺(tái)和三棱柱的高都為上、下底面之間的距離為,根據(jù)棱臺(tái)的體積公式,列出
19、方程求得,得到,即可求解.【詳解】(1)由題意,在中,所以,可得,因?yàn)?,可?又由,平面,所以平面,因?yàn)槠矫?,所?(2)因?yàn)?,可得,令,設(shè)三棱臺(tái)和三棱柱的高都為上、下底面之間的距離為,則,整理得,即,解得,即,又由,所以.【點(diǎn)睛】本題主要考查了直線與平面垂直的判定與應(yīng)用,以及幾何體的體積公式的應(yīng)用,其中解答中熟記線面位置關(guān)系的判定定理與性質(zhì)定理,以及熟練應(yīng)用幾何體的體積公式進(jìn)行求解是解答的關(guān)鍵,著重考查了推理與計(jì)算能力,屬于基礎(chǔ)題.20(1)(2)詳見解析【解析】(1)利用頻率分布直方圖平均數(shù)等于小矩形的面積乘以底邊中點(diǎn)橫坐標(biāo)之和,再利用正態(tài)分布的對(duì)稱性進(jìn)行求解.(2)寫出隨機(jī)變量的所有可能
20、取值,利用互斥事件和相互獨(dú)立事件同時(shí)發(fā)生的概率計(jì)算公式,再列表得到其分布列.【詳解】解:(1)從這1000人問卷調(diào)查得到的平均值為由于得分Z服從正態(tài)分布,(2)設(shè)得分不低于分的概率為p,(或由頻率分布直方圖知)法一:X的取值為10,20,30,40;所以X的分布列為X10203040P法二:2次隨機(jī)贈(zèng)送的話費(fèi)及對(duì)應(yīng)概率如下2次話費(fèi)總和203040PX的取值為10,20,30,40;所以X的分布列為X10203040P【點(diǎn)睛】本題考查了正態(tài)分布、離散型隨機(jī)變量的分布列,屬于基礎(chǔ)題.21(1)(2)見解析(3)存在唯一的等差數(shù)列,其通項(xiàng)公式為,滿足題設(shè)【解析】(1)由,可得公比,即得;(2)由(1)和可得數(shù)列的遞推公式,即可知結(jié)果為常數(shù),即得證;(3)由(2)可得數(shù)列的通項(xiàng)公式,設(shè)出等差數(shù)列,再根據(jù)不等關(guān)系來算出的首項(xiàng)和公差即可.【詳解】(1)設(shè)等比數(shù)列的公比為q,因?yàn)?,所以,解?所以數(shù)列的通項(xiàng)公式為:.(2)由(1)得,當(dāng),時(shí),可得,得,則有,即,.因?yàn)?,由得,所以,所以?所以數(shù)列是以為首項(xiàng),1為公差的等差數(shù)列.(3)由(2)得,所以,.假設(shè)存在等差數(shù)列,其通項(xiàng),使得對(duì)任意,都有,即對(duì)任意,都有.首先證明滿足的.若不然,則,或.(i)若,則當(dāng),時(shí),這與矛盾.(ii)若,則當(dāng),時(shí),.而,所以.故,這與矛盾.所以.其次證明:當(dāng)時(shí),.因?yàn)?,所以在上單調(diào)遞增,所
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年鄉(xiāng)下土地承包合同(2篇)
- 2025年個(gè)人間借款合同(2篇)
- 2025年代理服裝合同(2篇)
- 專題01 利用導(dǎo)函數(shù)研究函數(shù)的切線問題(典型題型歸類訓(xùn)練) 解析版
- 2025年產(chǎn)業(yè)基金戰(zhàn)略合作協(xié)議范文(2篇)
- 2025年五年級(jí)數(shù)學(xué)老師工作總結(jié)模版(二篇)
- 2025年二手車轉(zhuǎn)讓協(xié)議不過戶(2篇)
- 2025年臨時(shí)工安全生產(chǎn)協(xié)議(三篇)
- 快遞驛站裝修合同協(xié)議書
- 兒童樂園石膏吊頂裝修協(xié)議
- 全國助殘日關(guān)注殘疾人主題班會(huì)課件
- TCL任職資格體系資料HR
- 《中國古代寓言》導(dǎo)讀(課件)2023-2024學(xué)年統(tǒng)編版語文三年級(jí)下冊(cè)
- 五年級(jí)上冊(cè)計(jì)算題大全1000題帶答案
- 工會(huì)工作制度匯編
- 工程建設(shè)行業(yè)標(biāo)準(zhǔn)內(nèi)置保溫現(xiàn)澆混凝土復(fù)合剪力墻技術(shù)規(guī)程
- 液壓動(dòng)力元件-柱塞泵課件講解
- 人教版五年級(jí)上冊(cè)數(shù)學(xué)脫式計(jì)算100題及答案
- 屋面細(xì)石混凝土保護(hù)層施工方案及方法
- 2024年1月山西省高三年級(jí)適應(yīng)性調(diào)研測(cè)試(一模)理科綜合試卷(含答案)
- 2024年廣東高考(新課標(biāo)I卷)語文試題及參考答案
評(píng)論
0/150
提交評(píng)論