2022屆四川省瀘縣高三第二次調(diào)研數(shù)學(xué)試卷含解析_第1頁
2022屆四川省瀘縣高三第二次調(diào)研數(shù)學(xué)試卷含解析_第2頁
2022屆四川省瀘縣高三第二次調(diào)研數(shù)學(xué)試卷含解析_第3頁
2022屆四川省瀘縣高三第二次調(diào)研數(shù)學(xué)試卷含解析_第4頁
2022屆四川省瀘縣高三第二次調(diào)研數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、2021-2022高考數(shù)學(xué)模擬試卷考生請注意:1答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知函數(shù),若,則下列不等關(guān)系正確的是( )ABCD2閱讀如圖的程序框圖,若輸出的值為25,那么在程序框圖中的判斷框內(nèi)可填寫的條件是( )ABCD3已知,則p是q的( )A充分而不必要條

2、件B必要而不充分條件C充分必要條件D既不充分也不必要條件4設(shè)過點的直線分別與軸的正半軸和軸的正半軸交于兩點,點與點關(guān)于軸對稱,為坐標原點,若,且,則點的軌跡方程是( )ABCD5已知集合,則等于( )ABCD6 “中國剩余定理”又稱“孫子定理”,最早可見于中國南北朝時期的數(shù)學(xué)著作孫子算經(jīng)卷下第二十六題,叫做“物不知數(shù)”,原文如下:今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二.問物幾何?現(xiàn)有這樣一個相關(guān)的問題:將1到2020這2020個自然數(shù)中被5除余3且被7除余2的數(shù)按照從小到大的順序排成一列,構(gòu)成一個數(shù)列,則該數(shù)列各項之和為( )A56383B57171C59189D612427

3、集合的子集的個數(shù)是( )A2B3C4D88如圖,平面ABCD,ABCD為正方形,且,E,F(xiàn)分別是線段PA,CD的中點,則異面直線EF與BD所成角的余弦值為( )ABCD9已知點,若點在曲線上運動,則面積的最小值為( )A6B3CD10設(shè)遞增的等比數(shù)列的前n項和為,已知,則( )A9B27C81D11已知為虛數(shù)單位,若復(fù)數(shù),則ABCD12古希臘數(shù)學(xué)家畢達哥拉斯在公元前六世紀發(fā)現(xiàn)了第一、二個“完全數(shù)”6和28,進一步研究發(fā)現(xiàn)后續(xù)三個“完全數(shù)”分別為496,8128,33550336,現(xiàn)將這五個“完全數(shù)”隨機分為兩組,一組2個,另一組3個,則6和28恰好在同一組的概率為 ABCD二、填空題:本題共4

4、小題,每小題5分,共20分。13過拋物線C:()的焦點F且傾斜角為銳角的直線l與C交于A,B兩點,過線段的中點N且垂直于l的直線與C的準線交于點M,若,則l的斜率為_.14在正奇數(shù)非減數(shù)列中,每個正奇數(shù)出現(xiàn)次.已知存在整數(shù)、,對所有的整數(shù)滿足,其中表示不超過的最大整數(shù).則等于_.15五聲音階是中國古樂基本音階,故有成語“五音不全”.中國古樂中的五聲音階依次為:宮、商、角、徵、羽,如果把這五個音階全用上,排成一個五個音階的音序,且要求宮、羽兩音階不相鄰且在角音階的同側(cè),可排成_種不同的音序.16已知向量與的夾角為,|1,且(),則實數(shù)_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步

5、驟。17(12分)在,這三個條件中任選一個,補充在下面問題中,求的面積的值(或最大值)已知的內(nèi)角,所對的邊分別為,三邊,與面積滿足關(guān)系式:,且 ,求的面積的值(或最大值)18(12分)已知函數(shù)(1)若曲線在處的切線為,試求實數(shù),的值;(2)當(dāng)時,若有兩個極值點,且,若不等式恒成立,試求實數(shù)m的取值范圍19(12分)已知函數(shù).(1)若,且,求證:;(2)若時,恒有,求的最大值.20(12分)設(shè)函數(shù)(1)當(dāng)時,求不等式的解集;(2)若存在,使得不等式對一切恒成立,求實數(shù)的取值范圍21(12分)在四棱錐中,底面為直角梯形,面.(1)在線段上是否存在點,使面,說明理由;(2)求二面角的余弦值.22(1

6、0分)設(shè)函數(shù).(1)求的值;(2)若,求函數(shù)的單調(diào)遞減區(qū)間.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1B【解析】利用函數(shù)的單調(diào)性得到的大小關(guān)系,再利用不等式的性質(zhì),即可得答案.【詳解】在R上單調(diào)遞增,且,.的符號無法判斷,故與,與的大小不確定,對A,當(dāng)時,故A錯誤;對C,當(dāng)時,故C錯誤;對D,當(dāng)時,故D錯誤;對B,對,則,故B正確.故選:B.【點睛】本題考查分段函數(shù)的單調(diào)性、不等式性質(zhì)的運用,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,屬于基礎(chǔ)題.2C【解析】根據(jù)循環(huán)結(jié)構(gòu)的程序框圖,帶入依次計算可得輸

7、出為25時的值,進而得判斷框內(nèi)容.【詳解】根據(jù)循環(huán)程序框圖可知, 則,此時輸出,因而不符合條件框的內(nèi)容,但符合條件框內(nèi)容,結(jié)合選項可知C為正確選項,故選:C.【點睛】本題考查了循環(huán)結(jié)構(gòu)程序框圖的簡單應(yīng)用,完善程序框圖,屬于基礎(chǔ)題.3B【解析】根據(jù)誘導(dǎo)公式化簡再分析即可.【詳解】因為,所以q成立可以推出p成立,但p成立得不到q成立,例如,而,所以p是q的必要而不充分條件.故選:B【點睛】本題考查充分與必要條件的判定以及誘導(dǎo)公式的運用,屬于基礎(chǔ)題.4A【解析】設(shè)坐標,根據(jù)向量坐標運算表示出,從而可利用表示出;由坐標運算表示出,代入整理可得所求的軌跡方程.【詳解】設(shè),其中, ,即 關(guān)于軸對稱 故選:

8、【點睛】本題考查動點軌跡方程的求解,涉及到平面向量的坐標運算、數(shù)量積運算;關(guān)鍵是利用動點坐標表示出變量,根據(jù)平面向量數(shù)量積的坐標運算可整理得軌跡方程.5A【解析】進行交集的運算即可【詳解】,1,2,1,故選:【點睛】本題主要考查了列舉法、描述法的定義,考查了交集的定義及運算,考查了計算能力,屬于基礎(chǔ)題6C【解析】根據(jù)“被5除余3且被7除余2的正整數(shù)”,可得這些數(shù)構(gòu)成等差數(shù)列,然后根據(jù)等差數(shù)列的前項和公式,可得結(jié)果.【詳解】被5除余3且被7除余2的正整數(shù)構(gòu)成首項為23,公差為的等差數(shù)列,記數(shù)列則 令,解得.故該數(shù)列各項之和為.故選:C.【點睛】本題考查等差數(shù)列的應(yīng)用,屬基礎(chǔ)題。7D【解析】先確定

9、集合中元素的個數(shù),再得子集個數(shù)【詳解】由題意,有三個元素,其子集有8個故選:D【點睛】本題考查子集的個數(shù)問題,含有個元素的集合其子集有個,其中真子集有個8C【解析】分別以AB,AD,AP所在直線為x軸,y軸,軸,建立如圖所示的空間直角坐標系,再利用向量法求異面直線EF與BD所成角的余弦值.【詳解】由題可知,分別以AB,AD,AP所在直線為x軸,y軸,軸,建立如圖所示的空間直角坐標系.設(shè).則.故異面直線EF與BD所成角的余弦值為.故選:C【點睛】本題主要考查空間向量和異面直線所成的角的向量求法,意在考查學(xué)生對這些知識的理解掌握水平.9B【解析】求得直線的方程,畫出曲線表示的下半圓,結(jié)合圖象可得位

10、于,結(jié)合點到直線的距離公式和兩點的距離公式,以及三角形的面積公式,可得所求最小值.【詳解】解:曲線表示以原點為圓心,1為半徑的下半圓(包括兩個端點),如圖,直線的方程為,可得,由圓與直線的位置關(guān)系知在時,到直線距離最短,即為,則的面積的最小值為.故選:B.【點睛】本題考查三角形面積最值,解題關(guān)鍵是掌握直線與圓的位置關(guān)系,確定半圓上的點到直線距離的最小值,這由數(shù)形結(jié)合思想易得10A【解析】根據(jù)兩個已知條件求出數(shù)列的公比和首項,即得的值.【詳解】設(shè)等比數(shù)列的公比為q.由,得,解得或.因為.且數(shù)列遞增,所以.又,解得,故.故選:A【點睛】本題主要考查等比數(shù)列的通項和求和公式,意在考查學(xué)生對這些知識的

11、理解掌握水平.11B【解析】因為,所以,故選B12B【解析】推導(dǎo)出基本事件總數(shù),6和28恰好在同一組包含的基本事件個數(shù),由此能求出6和28恰好在同一組的概率【詳解】解:將五個“完全數(shù)”6,28,496,8128,33550336,隨機分為兩組,一組2個,另一組3個,基本事件總數(shù),6和28恰好在同一組包含的基本事件個數(shù),6和28恰好在同一組的概率故選:B【點睛】本題考查概率的求法,考查古典概型、排列組合等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。13【解析】分別過A,B,N作拋物線的準線的垂線,垂足分別為,根據(jù)拋物線定義和求得,從而求得直線l的傾斜角.【

12、詳解】分別過A,B,N作拋物線的準線的垂線,垂足分別為,由拋物線的定義知,因為,所以,所以,即直線的傾斜角為,又直線與直線l垂直且直線l的傾斜角為銳角,所以直線l的傾斜角為,.故答案為:【點睛】此題考查拋物線的定義,根據(jù)已知條件做出輔助線利用拋物線定義和幾何關(guān)系即可求解,屬于較易題目.142【解析】將已知數(shù)列分組為(1),共個組.設(shè)在第組,則有,即.注意到,解得.所以,.因此,.故.151【解析】按照“角”的位置分類,分“角”在兩端,在中間,以及在第二個或第四個位置上,即可求出.【詳解】若“角”在兩端,則宮、羽兩音階一定在角音階同側(cè),此時有種;若“角”在中間,則不可能出現(xiàn)宮、羽兩音階不相鄰且在

13、角音階的同側(cè);若“角”在第二個或第四個位置上,則有種;綜上,共有種.故答案為:1【點睛】本題主要考查利用排列知識解決實際問題,涉及分步計數(shù)乘法原理和分類計數(shù)加法原理的應(yīng)用,意在考查學(xué)生分類討論思想的應(yīng)用和綜合運用知識的能力,屬于基礎(chǔ)題.161【解析】根據(jù)條件即可得出,由即可得出,進行數(shù)量積的運算即可求出【詳解】向量與的夾角為,|1,且;1故答案為:1【點睛】考查向量數(shù)量積的運算及計算公式,以及向量垂直的充要條件三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17見解析【解析】若選擇,結(jié)合三角形的面積公式,得,化簡得到,則,又,從而得到, 將代入,得又,當(dāng)且僅當(dāng)時等號成立,故的面積

14、的最大值為,此時 若選擇,結(jié)合三角形的面積公式,得,化簡得到,則,又,從而得到,則,此時為等腰直角三角形,.若選擇,則結(jié)合三角形的面積公式,得,化簡得到,則,又,從而得到,則18(1);(2)【解析】(1)根據(jù)題意,求得的值,根據(jù)切點在切線上以及斜率等于,構(gòu)造方程組求得的值;(2)函數(shù)有兩個極值點,等價于方程的兩個正根,不等式恒成立,等價于恒成立,令,求出導(dǎo)數(shù),判斷單調(diào)性,即可得到的范圍,即的范圍.【詳解】(1)由題可知,聯(lián)立可得(2)當(dāng)時,有兩個極值點,且,是方程的兩個正根,不等式恒成立,即恒成立,由,得,令,在上是減函數(shù),故【點睛】該題考查的是有關(guān)導(dǎo)數(shù)的問題,涉及到的知識點有導(dǎo)數(shù)的幾何意義

15、,函數(shù)的極值點的個數(shù),構(gòu)造新函數(shù),應(yīng)用導(dǎo)數(shù)研究函數(shù)的值域得到參數(shù)的取值范圍,屬于較難題目.19(1)見解析;(2).【解析】(1)利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,并設(shè),則,將不等式等價轉(zhuǎn)化為證明,構(gòu)造函數(shù),利用導(dǎo)數(shù)分析函數(shù)在區(qū)間上的單調(diào)性,通過推導(dǎo)出來證得結(jié)論;(2)構(gòu)造函數(shù),對實數(shù)分、,利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,求出函數(shù)的最小值,再通過構(gòu)造新函數(shù),利用導(dǎo)數(shù)求出函數(shù)的最大值,可得出的最大值.【詳解】(1),所以,函數(shù)單調(diào)遞增,所以,當(dāng)時,此時,函數(shù)單調(diào)遞減;當(dāng)時,此時,函數(shù)單調(diào)遞增.要證,即證.不妨設(shè),則,下證,即證,構(gòu)造函數(shù),所以,函數(shù)在區(qū)間上單調(diào)遞增,即,即,且函數(shù)在區(qū)間上單調(diào)遞增,所以,即,故

16、結(jié)論成立;(2)由恒成立,得恒成立,令,則.當(dāng)時,對任意的,函數(shù)在上單調(diào)遞增,當(dāng)時,不符合題意;當(dāng)時,;當(dāng)時,令,得,此時,函數(shù)單調(diào)遞增;令,得,此時,函數(shù)單調(diào)遞減.令,設(shè),則.當(dāng)時,此時函數(shù)單調(diào)遞增;當(dāng)時,此時函數(shù)單調(diào)遞減.所以,函數(shù)在處取得最大值,即.因此,的最大值為.【點睛】本題考查利用導(dǎo)數(shù)證明不等式,同時也考查了利用導(dǎo)數(shù)求代數(shù)式的最值,構(gòu)造新函數(shù)是解答的關(guān)鍵,考查推理能力,屬于難題.20 () .().【解析】()時,根據(jù)絕對值不等式的定義去掉絕對值,求不等式的解集即可;()不等式的解集為,等價于,求出在的最小值即可【詳解】()當(dāng)時,時,不等式化為,解得,即時,不等式化為,不等式恒成立

17、,即時,不等式化為,解得,即綜上所述,不等式的解集為()不等式的解集為 對任意恒成立當(dāng)時,取得最小值為實數(shù)的取值范圍是【點睛】本題考查了絕對值不等式的解法與應(yīng)用問題,也考查了函數(shù)絕對值三角不等式的應(yīng)用問題,屬于常規(guī)題型21(1)存在;詳見解析(2)【解析】(1)利用面面平行的性質(zhì)定理可得,為上靠近點的三等分點,中點,證明平面平面即得;(2)過作交于,可得兩兩垂直,以分別為軸建立空間直角坐標系,求出長,寫出各點坐標,用向量法求二面角【詳解】解:(1)當(dāng)為上靠近點的三等分點時,滿足面.證明如下,取中點,連結(jié).即易得所以面面,即面(2)過作交于面,兩兩垂直,以分別為軸建立空間直角坐標系,如圖,設(shè)面法向量,則,即取同理可得面的法向量綜上可知銳二面角的余弦值為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論