版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、2021-2022高考數(shù)學模擬試卷注意事項1考生要認真填寫考場號和座位序號。2試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B 鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1設全集U=R,集合,則()ABCD2若函數(shù)函數(shù)只有1個零點,則的取值范圍是( )ABCD3在中,角、所對的邊分別為、,若,則( )ABCD4一個幾何體的三視圖如圖所示,則該幾何體的表面積為( )ABCD845若函數(shù)的圖象如圖所示,則的解
2、析式可能是( )ABCD6已知為一條直線,為兩個不同的平面,則下列說法正確的是( )A若,則B若,則C若,則D若,則7已知函數(shù),則下列結論錯誤的是( )A函數(shù)的最小正周期為B函數(shù)的圖象關于點對稱C函數(shù)在上單調遞增D函數(shù)的圖象可由的圖象向左平移個單位長度得到8已知集合,集合,則AB或CD9直三棱柱中,則直線與所成的角的余弦值為( )ABCD10根據(jù)黨中央關于“精準”脫貧的要求,我市某農業(yè)經濟部門派四位專家對三個縣區(qū)進行調研,每個縣區(qū)至少派一位專家,則甲,乙兩位專家派遣至同一縣區(qū)的概率為()ABCD11已知雙曲線:的焦點為,且上點滿足,則雙曲線的離心率為ABCD512如圖示,三棱錐的底面是等腰直角
3、三角形,且,則與面所成角的正弦值等于( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13若函數(shù)滿足:是偶函數(shù);的圖象關于點對稱.則同時滿足的,的一組值可以分別是_.14函數(shù)的定義域是_15若實數(shù)x,y滿足不等式組x+y-40,2x-3y-80,x1,則目標函數(shù)z=3x-y的最大值為_16某幾何體的三視圖如圖所示,且該幾何體的體積是3,則正視圖的的值_三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)某市調硏機構對該市工薪階層對“樓市限購令”態(tài)度進行調查,抽調了50名市民,他們月收入頻數(shù)分布表和對“樓市限購令”贊成人數(shù)如下表:月收入(單位:百元)頻數(shù)510
4、55頻率0.10.20.10.1贊成人數(shù)4812521(1)若所抽調的50名市民中,收入在的有15名,求,的值,并完成頻率分布直方圖(2)若從收入(單位:百元)在的被調查者中隨機選取2人進行追蹤調查,選中的2人中恰有人贊成“樓市限購令”,求的分布列與數(shù)學期望(3)從月收入頻率分布表的6組市民中分別隨機抽取3名市民,恰有一組的3名市民都不贊成“樓市限購令”,根據(jù)表格數(shù)據(jù),判斷這3名市民來自哪組的可能性最大?請直接寫出你的判斷結果18(12分)已知函數(shù)(1)解不等式;(2)若均為正實數(shù),且滿足,為的最小值,求證:.19(12分)運輸一批海鮮,可在汽車、火車、飛機三種運輸工具中選擇,它們的速度分別為
5、60千米/小時、120千米/小時、600千米/小時,每千米的運費分別為20元、10元、50元.這批海鮮在運輸過程中每小時的損耗為m元(),運輸?shù)穆烦虨镾(千米).設用汽車、火車、飛機三種運輸工具運輸時各自的總費用(包括運費和損耗費)分別為(元)、(元)、(元).(1)請分別寫出、的表達式;(2)試確定使用哪種運輸工具總費用最省.20(12分)每年的寒冷天氣都會帶熱“御寒經濟”,以交通業(yè)為例,當天氣太冷時,不少人都會選擇利用手機上的打車軟件在網上預約出租車出行,出租車公司的訂單數(shù)就會增加.下表是某出租車公司從出租車的訂單數(shù)據(jù)中抽取的5天的日平均氣溫(單位:)與網上預約出租車訂單數(shù)(單位:份);日
6、平均氣溫()642網上預約訂單數(shù)100135150185210(1)經數(shù)據(jù)分析,一天內平均氣溫與該出租車公司網約訂單數(shù)(份)成線性相關關系,試建立關于的回歸方程,并預測日平均氣溫為時,該出租車公司的網約訂單數(shù);(2)天氣預報未來5天有3天日平均氣溫不高于,若把這5天的預測數(shù)據(jù)當成真實的數(shù)據(jù),根據(jù)表格數(shù)據(jù),則從這5天中任意選取2天,求恰有1天網約訂單數(shù)不低于210份的概率.附:回歸直線的斜率和截距的最小二乘法估計分別為:21(12分)已知公比為正數(shù)的等比數(shù)列的前項和為,且,.(1)求數(shù)列的通項公式;(2)設,求數(shù)列的前項和.22(10分)某公司生產的某種產品,如果年返修率不超過千分之一,則其生產
7、部門當年考核優(yōu)秀,現(xiàn)獲得該公司年的相關數(shù)據(jù)如下表所示:年份20112012201320142015201620172018年生產臺數(shù)(萬臺)2345671011該產品的年利潤(百萬元)2.12.753.53.2534.966.5年返修臺數(shù)(臺)2122286580658488部分計算結果:,注:年返修率=(1)從該公司年的相關數(shù)據(jù)中任意選取3年的數(shù)據(jù),以表示3年中生產部門獲得考核優(yōu)秀的次數(shù),求的分布列和數(shù)學期望;(2)根據(jù)散點圖發(fā)現(xiàn)2015年數(shù)據(jù)偏差較大,如果去掉該年的數(shù)據(jù),試用剩下的數(shù)據(jù)求出年利潤(百萬元)關于年生產臺數(shù)(萬臺)的線性回歸方程(精確到0.01).附:線性回歸方程中, ,.參考
8、答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1A【解析】求出集合M和集合N,,利用集合交集補集的定義進行計算即可【詳解】,則,故選:A【點睛】本題考查集合的交集和補集的運算,考查指數(shù)不等式和二次不等式的解法,屬于基礎題2C【解析】轉化有1個零點為與的圖象有1個交點,求導研究臨界狀態(tài)相切時的斜率,數(shù)形結合即得解.【詳解】有1個零點等價于與的圖象有1個交點記,則過原點作的切線,設切點為,則切線方程為,又切線過原點,即,將,代入解得所以切線斜率為,所以或故選:C【點睛】本題考查了導數(shù)在函數(shù)零點問題中的應用,考查了學生數(shù)形結合,轉化劃歸,數(shù)
9、學運算的能力,屬于較難題.3D【解析】利用余弦定理角化邊整理可得結果.【詳解】由余弦定理得:,整理可得:,.故選:.【點睛】本題考查余弦定理邊角互化的應用,屬于基礎題.4B【解析】畫出幾何體的直觀圖,計算表面積得到答案.【詳解】該幾何體的直觀圖如圖所示:故.故選:.【點睛】本題考查了根據(jù)三視圖求表面積,意在考查學生的計算能力和空間想象能力.5A【解析】由函數(shù)性質,結合特殊值驗證,通過排除法求得結果.【詳解】對于選項B, 為 奇函數(shù)可判斷B錯誤;對于選項C,當時, ,可判斷C錯誤;對于選項D, ,可知函數(shù)在第一象限的圖象無增區(qū)間,故D錯誤;故選:A.【點睛】本題考查已知函數(shù)的圖象判斷解析式問題,
10、通過函數(shù)性質及特殊值利用排除法是解決本題的關鍵,難度一般.6D【解析】A. 若,則或,故A錯誤;B. 若,則或故B錯誤;C. 若,則或,或與相交;D. 若,則,正確.故選D.7D【解析】由可判斷選項A;當時,可判斷選項B;利用整體換元法可判斷選項C;可判斷選項D.【詳解】由題知,最小正周期,所以A正確;當時,所以B正確;當時,所以C正確;由的圖象向左平移個單位,得,所以D錯誤.故選:D.【點睛】本題考查余弦型函數(shù)的性質,涉及到周期性、對稱性、單調性以及圖象變換后的解析式等知識,是一道中檔題.8C【解析】由可得,解得或,所以或,又,所以,故選C9A【解析】設,延長至,使得,連,可證,得到(或補角
11、)為所求的角,分別求出,解即可.【詳解】設,延長至,使得,連,在直三棱柱中,四邊形為平行四邊形,(或補角)為直線與所成的角,在中,在中,在中,在中,在中,.故選:A.【點睛】本題考查異面直線所成的角,要注意幾何法求空間角的步驟“做”“證”“算”缺一不可,屬于中檔題.10A【解析】每個縣區(qū)至少派一位專家,基本事件總數(shù),甲,乙兩位專家派遣至同一縣區(qū)包含的基本事件個數(shù),由此能求出甲,乙兩位專家派遣至同一縣區(qū)的概率.【詳解】派四位專家對三個縣區(qū)進行調研,每個縣區(qū)至少派一位專家基本事件總數(shù):甲,乙兩位專家派遣至同一縣區(qū)包含的基本事件個數(shù):甲,乙兩位專家派遣至同一縣區(qū)的概率為:本題正確選項:【點睛】本題考
12、查概率的求法,考查古典概型等基礎知識,考查運算求解能力,是基礎題.11D【解析】根據(jù)雙曲線定義可以直接求出,利用勾股定理可以求出,最后求出離心率.【詳解】依題意得,因此該雙曲線的離心率.【點睛】本題考查了雙曲線定義及雙曲線的離心率,考查了運算能力.12A【解析】首先找出與面所成角,根據(jù)所成角所在三角形利用余弦定理求出所成角的余弦值,再根據(jù)同角三角函數(shù)關系求出所成角的正弦值.【詳解】由題知是等腰直角三角形且,是等邊三角形,設中點為,連接,可知,同時易知,所以面,故即為與面所成角,有,故.故選:A.【點睛】本題主要考查了空間幾何題中線面夾角的計算,屬于基礎題.二、填空題:本題共4小題,每小題5分,
13、共20分。13,【解析】根據(jù)是偶函數(shù)和的圖象關于點對稱,即可求出滿足條件的和.【詳解】由是偶函數(shù)及,可取,則,由的圖象關于點對稱,得,即,可取.故,的一組值可以分別是,.故答案為:,.【點睛】本題主要考查了正弦型三角函數(shù)的性質,屬于基礎題.14【解析】由,得,所以,所以原函數(shù)定義域為,故答案為.1512【解析】畫出約束條件的可行域,求出最優(yōu)解,即可求解目標函數(shù)的最大值【詳解】根據(jù)約束條件畫出可行域,如下圖,由x+y-4=02x-3y-8=0,解得A(4,0)目標函數(shù)y=3x-z,當y=3x-z過點(4,0)時,z有最大值,且最大值為12故答案為:12【點睛】本題考查線性規(guī)劃的簡單應用,屬于基礎
14、題163【解析】 由已知中的三視圖可得該幾何體是一個以直角梯形為底面,梯形上下邊長為和,高為, 如圖所示,平面, 所以底面積為, 幾何體的高為,所以其體積為 點睛:在由三視圖還原為空間幾何體的實際形狀時,要從三個視圖綜合考慮,根據(jù)三視圖的規(guī)則,空間幾何體的可見輪廓線在三視圖中為實線,不可見輪廓線在三視圖中為虛線在還原空間幾何體實際形狀時,一般是以正視圖和俯視圖為主,結合側視圖進行綜合考慮求解以三視圖為載體的空間幾何體的體積的關鍵是由三視圖確定直觀圖的形狀以及直觀圖中線面的位置關系和數(shù)量關系,利用相應體積公式求解三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1),頻率分布直
15、方圖見解析;(2)分布列見解析,;(3)來自的可能性最大【解析】(1)由頻率和為可知,根據(jù)求得,從而計算得到頻數(shù),補全頻率分布表后可畫出頻率分布直方圖;(2)首先確定的所有可能取值,由超幾何分布概率公式可計算求得每個取值對應的概率,由此得到分布列;根據(jù)數(shù)學期望的計算公式可求得期望;(3)根據(jù)中不贊成比例最大可知來自的可能性最大.【詳解】(1)由頻率分布表得:,即收入在的有名,則頻率分布直方圖如下:(2)收入在中贊成人數(shù)為,不贊成人數(shù)為,可能取值為,則;,的分布列為:(3)來自的可能性更大【點睛】本題考查概率與統(tǒng)計部分知識的綜合應用,涉及到頻數(shù)、頻率的計算、頻率分布直方圖的繪制、服從于超幾何分布
16、的隨機變量的分布列與數(shù)學期望的求解、統(tǒng)計估計等知識;考查學生的運算和求解能力.18(1)或(2)證明見解析【解析】(1)將寫成分段函數(shù)的形式,由此求得不等式的解集.(2)由(1)求得最小值,由此利用基本不等式,證得不等式成立.【詳解】(1)當時,恒成立,解得;當時,由,解得;當時,由解得所以的解集為或(2)由(1)可求得最小值為,即因為均為正實數(shù),且(當且僅當時,取“”)所以,即.【點睛】本小題主要考查絕對值不等式的求法,考查利用基本不等式證明不等式,屬于中檔題.19(1),.(2)當時,此時選擇火車運輸費最??;當時,此時選擇飛機運輸費用最?。划敃r,此時選擇火車或飛機運輸費用最省.【解析】(1
17、)將運費和損耗費相加得出總費用的表達式.(2)作差比較、的大小關系得出結論.【詳解】(1),.(2), 故,恒成立,故只需比較與的大小關系即可,令,故當,即時,即,此時選擇火車運輸費最省,當,即時,即,此時選擇飛機運輸費用最省.當,即時,此時選擇火車或飛機運輸費用最省.【點睛】本題考查了常見函數(shù)的模型,考查了分類討論的思想,屬于基礎題.20(1),232;(2)【解析】(1) 根據(jù)公式代入求解;(2) 先列出基本事件空間,再列出要求的事件,最后求概率即可.【詳解】解:(1)由表格可求出代入公式求出,所以,所以當時,.所以可預測日平均氣溫為時該出租車公司的網約訂單數(shù)約為232份.(2)記這5天中
18、氣溫不高于的三天分別為,另外兩天分別記為,則在這5天中任意選取2天有,共10個基本事件,其中恰有1天網約訂單數(shù)不低于210份的有,共6個基本事件,所以所求概率,即恰有1天網約訂單數(shù)不低于20份的概率為.【點睛】考查線性回歸系數(shù)的求法以及古典概型求概率的方法,中檔題.21(1)(2)【解析】(1)判斷公比不為1,運用等比數(shù)列的求和公式,解方程可得公比,進而得到所求通項公式;(2)求得,運用數(shù)列的錯位相減法求和,以及等比數(shù)列的求和公式,計算可得所求和.【詳解】解:(1)設公比為正數(shù)的等比數(shù)列的前項和為,且,可得時,不成立;當時,即,解得(舍去),則;(2),前項和,兩式相減可得,化簡可得.【點睛】本題考查等比數(shù)列的通項公式和求和公式的運用,考查數(shù)列的錯位相減法求和,考查方程思想和運算能力,屬于中檔題22(1)見解析;(2)【解析】(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024藝術品拍賣與宣傳推廣綜合服務合同3篇
- 2025年度環(huán)保設施PPP項目合作合同范本3篇
- 2025年度智能車庫產權交易合同范本4篇
- 2025年度文化產業(yè)園開發(fā)與租賃合同3篇
- 2025年企事業(yè)單位食堂承包與托管全面合作協(xié)議12篇
- 2025年度廠長任期項目投資與風險管理合同3篇
- 2025年中投中財基金管理有限公司招聘筆試參考題庫含答案解析
- 2025年中化集團中化能源物流公司招聘筆試參考題庫含答案解析
- 二零二五版美容院專業(yè)護膚技術研發(fā)與轉讓合同4篇
- 二零二五版門窗安裝工程環(huán)保驗收合同2篇
- MT/T 199-1996煤礦用液壓鉆車通用技術條件
- GB/T 6144-1985合成切削液
- GB/T 10357.1-2013家具力學性能試驗第1部分:桌類強度和耐久性
- 第三方在線糾紛解決機制(ODR)述評,國際商法論文
- 第5章-群體-團隊溝通-管理溝通
- 腎臟病飲食依從行為量表(RABQ)附有答案
- 深基坑-安全教育課件
- 園林施工管理大型園林集團南部區(qū)域養(yǎng)護標準圖例
- 排水許可申請表
- 低血糖的觀察和護理課件
- 計量檢定校準技術服務合同協(xié)議書
評論
0/150
提交評論