2022-2023學年四川省南充市老君鎮(zhèn)中學高二數(shù)學文下學期期末試題含解析_第1頁
2022-2023學年四川省南充市老君鎮(zhèn)中學高二數(shù)學文下學期期末試題含解析_第2頁
免費預覽已結束,剩余1頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、2022-2023學年四川省南充市老君鎮(zhèn)中學高二數(shù)學文下學期期末試題含解析一、 選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1. 在等比數(shù)列an中,a1=2,a4=16則公比q為()A2B3C4D8參考答案:A【考點】等比數(shù)列的通項公式【分析】利用等比數(shù)列的通項公式列出方程,由此能求出公比【解答】解:在等比數(shù)列an中,a1=2,a4=16,解得公比q=2故選:A2. 已知有兩個極值點、,且在區(qū)間(0,1)上有極大值,無極小值,則實數(shù)的取值范圍是( ) A. B. C. D. 參考答案:A3. 已知空間向量(1,2,4),(x,1,2),并且

2、,則x的值為( )A10 B C. 10 D參考答案:B略4. A、B兩籃球隊進行比賽,規(guī)定若一隊勝4場則此隊獲勝且比賽結束(七局四勝制),A、B兩隊在每場比賽中獲勝的概率均為,為比賽需要的場數(shù),則E=()ABCD參考答案:B【考點】CH:離散型隨機變量的期望與方差【分析】先確定比賽需要的場數(shù)的取值,求出相應的概率,即可求得數(shù)學期望【解答】解:由題設知,比賽需要的場數(shù)為4,5,6,7p(=4)=()4+()4=;p(=5)=2=;p(=6)=2=p(=7)=2=E=4+5+6+7=故選B【點評】本題考查離散型隨機變量的數(shù)學期望,考查學生的運算能力,確定變量的取值,求出相應的概率是關鍵5. 已知

3、函數(shù)y=f(x)的圖象為R上的一條連續(xù)不斷的曲線,當x0時,f(x)+0,則關于x的函數(shù)g(x)=f(x)+的零點的個數(shù)為()A0B1C2D0或2參考答案:A【考點】函數(shù)零點的判定定理【分析】將求g(x)的零點個數(shù)轉化為求xg(x)的最值問題,由已知求出h(x)=xg(x)0,得出g(x)0恒成立【解答】解:f(x)+0,令h(x)=xf(x)+1,h(x)=f(x)+xf(x),x0時,h(x)單調遞增,x0時,h(x)單調遞減,h(x)min=h(0)=10,x0時,g(x)0恒成立,故零點的個數(shù)是0個,故選:A6. 在等差數(shù)列中,已知,則( )A. B. C. D.參考答案:A7. 已知

4、向量=(2,4,5),=(3,x,y)分別是直線l1、l2的方向向量,若l1l2,則()Ax=6,y=15Bx=3,y=Cx=3,y=15Dx=6,y=參考答案:D【考點】共線向量與共面向量【分析】由l1l2,利用向量共線定理可得:存在非0實數(shù)k使得,解出即可【解答】解:l1l2,存在非0實數(shù)k使得,解得,故選:D【點評】本題考查了向量共線定理,屬于基礎題8. 經過點P(1,4)的直線在兩坐標軸上的截距都是正值,且截距之和最小,則直線的方程為() A x+2y6=0 B 2x+y6=0 C x2y+7=0 D x2y7=0參考答案:B考點: 直線的斜截式方程專題: 計算題分析: 設出直線方程的

5、截距式,把經過的點P(1,4)的坐標代入得a與b的等式關系,把截距的和a+b變形后使用基本不等式求出它的最小值解答: 解:設直線的方程為+=1(a0,b0),則有+=1,a+b=(a+b)1=(a+b)(+)=5+5+4=9,當且僅當=,即a=3,b=6時取“=”直線方程為2x+y6=0故選B點評: 本題考查直線方程的截距式,利用基本不等式求截距和的最小值,注意等號成立的條件需檢驗9. 已知長方體中,,為的中點,則點與到平面的距離為 ()A B C D參考答案:D10. 把邊長為a的正方形卷成圓柱形,則圓柱的體積是( )A B C D 參考答案:C略二、 填空題:本大題共7小題,每小題4分,共28分11. 已知橢圓(0b3)與雙曲線x2-=1有相同的焦點F1,F(xiàn)2,P是兩曲線位于第一象限的一個交點,則cos0),直線l是曲線的一條切線,當l斜率最小時,直線l與直線平行(1)求a的值; (2)求在x=3處的切線方程。參考答案:(1)由題意 斜率的最小值為 得:a=1(2)則 則 切點坐標為:(3,-10),切線為:y+10=6(x-3) 即:y=6x-2822. (本小題滿分14分)已知:,:,(1)若是的充分不必要條件,求的取值范圍

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論