四川省綿陽市江油市市級名校2021-2022學年中考數(shù)學最后沖刺濃縮精華卷含解析_第1頁
四川省綿陽市江油市市級名校2021-2022學年中考數(shù)學最后沖刺濃縮精華卷含解析_第2頁
四川省綿陽市江油市市級名校2021-2022學年中考數(shù)學最后沖刺濃縮精華卷含解析_第3頁
四川省綿陽市江油市市級名校2021-2022學年中考數(shù)學最后沖刺濃縮精華卷含解析_第4頁
四川省綿陽市江油市市級名校2021-2022學年中考數(shù)學最后沖刺濃縮精華卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2021-2022中考數(shù)學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.射擊訓練中,甲、乙、丙、丁四人每人射擊10次,平均環(huán)數(shù)均為8.7環(huán),方差分別為,,,,則四人中成績最穩(wěn)定的是()A.甲 B.乙 C.丙 D.丁2.下列計算正確的是()A.(﹣2a)2=2a2 B.a(chǎn)6÷a3=a2C.﹣2(a﹣1)=2﹣2a D.a(chǎn)?a2=a23.下列命題中假命題是()A.正六邊形的外角和等于 B.位似圖形必定相似C.樣本方差越大,數(shù)據(jù)波動越小 D.方程無實數(shù)根4.對于代數(shù)式ax2+bx+c(a≠0),下列說法正確的是()①如果存在兩個實數(shù)p≠q,使得ap2+bp+c=aq2+bq+c,則a+bx+c=a(x-p)(x-q)②存在三個實數(shù)m≠n≠s,使得am2+bm+c=an2+bn+c=as2+bs+c③如果ac<0,則一定存在兩個實數(shù)m<n,使am2+bm+c<0<an2+bn+c④如果ac>0,則一定存在兩個實數(shù)m<n,使am2+bm+c<0<an2+bn+cA.③ B.①③ C.②④ D.①③④5.下列說法:①-102②數(shù)軸上的點與實數(shù)成一一對應關(guān)系;③﹣2是16的平方根;④任何實數(shù)不是有理數(shù)就是無理數(shù);⑤兩個無理數(shù)的和還是無理數(shù);⑥無理數(shù)都是無限小數(shù),其中正確的個數(shù)有()A.2個 B.3個 C.4個 D.5個6.若代數(shù)式有意義,則實數(shù)x的取值范圍是()A.x≠1 B.x≥0 C.x≠0 D.x≥0且x≠17.已知⊙O及⊙O外一點P,過點P作出⊙O的一條切線(只有圓規(guī)和三角板這兩種工具),以下是甲、乙兩同學的作業(yè):甲:①連接OP,作OP的垂直平分線l,交OP于點A;②以點A為圓心、OA為半徑畫弧、交⊙O于點M;③作直線PM,則直線PM即為所求(如圖1).乙:①讓直角三角板的一條直角邊始終經(jīng)過點P;②調(diào)整直角三角板的位置,讓它的另一條直角邊過圓心O,直角頂點落在⊙O上,記這時直角頂點的位置為點M;③作直線PM,則直線PM即為所求(如圖2).對于兩人的作業(yè),下列說法正確的是()A.甲乙都對 B.甲乙都不對C.甲對,乙不對 D.甲不對,已對8.如圖,正方形ABCD的頂點C在正方形AEFG的邊AE上,AB=2,AE=,則點G到BE的距離是()A. B. C. D.9.如圖,在平面直角坐標系中Rt△ABC的斜邊BC在x軸上,點B坐標為(1,0),AC=2,∠ABC=30°,把Rt△ABC先繞B點順時針旋轉(zhuǎn)180°,然后再向下平移2個單位,則A點的對應點A′的坐標為()A.(﹣4,﹣2﹣) B.(﹣4,﹣2+) C.(﹣2,﹣2+) D.(﹣2,﹣2﹣)10.下列計算正確的是()A.x2+x3=x5 B.x2?x3=x5 C.(﹣x2)3=x8 D.x6÷x2=x3二、填空題(共7小題,每小題3分,滿分21分)11.21世紀納米技術(shù)將被廣泛應用.納米是長度的度量單位,1納米=0.000000001米,則12納米用科學記數(shù)法表示為_______米.12.如圖,在邊長為3的菱形ABCD中,點E在邊CD上,點F為BE延長線與AD延長線的交點.若DE=1,則DF的長為________.13.按照神舟號飛船環(huán)境控制與生命保障分系統(tǒng)的設(shè)計指標,“神舟”五號飛船返回艙的溫度為21℃±4℃.該返回艙的最高溫度為________℃.14.已知圖中Rt△ABC,∠B=90°,AB=BC,斜邊AC上的一點D,滿足AD=AB,將線段AC繞點A逆時針旋轉(zhuǎn)α(0°<α<360°),得到線段AC’,連接DC’,當DC’//BC時,旋轉(zhuǎn)角度α的值為_________,15.豎直上拋的小球離地面的高度h(米)與時間t(秒)的函數(shù)關(guān)系式為h=﹣2t2+mt+,若小球經(jīng)過秒落地,則小球在上拋的過程中,第____秒時離地面最高.16.如圖,已知拋物線與坐標軸分別交于A,B,C三點,在拋物線上找到一點D,使得∠DCB=∠ACO,則D點坐標為____________________.17.如圖,在中,CM平分交AB于點M,過點M作交AC于點N,且MN平分,若,則BC的長為______.三、解答題(共7小題,滿分69分)18.(10分)“C919”大型客機首飛成功,激發(fā)了同學們對航空科技的興趣,如圖是某校航模興趣小組獲得的一張數(shù)據(jù)不完整的航模飛機機翼圖紙,圖中AB∥CD,AM∥BN∥ED,AE⊥DE,請根據(jù)圖中數(shù)據(jù),求出線段BE和CD的長.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,結(jié)果保留小數(shù)點后一位)19.(5分)如圖,在中,,,點D是BC上任意一點,將線段AD繞點A逆時針方向旋轉(zhuǎn),得到線段AE,連結(jié)EC.依題意補全圖形;求的度數(shù);若,,將射線DA繞點D順時針旋轉(zhuǎn)交EC的延長線于點F,請寫出求AF長的思路.20.(8分)漳州市某中學對全校學生進行文明禮儀知識測試,為了解測試結(jié)果,隨機抽取部分學生的成績進行分析,將成績分為三個等級:不合格、一般、優(yōu)秀,并繪制成如下兩幅統(tǒng)計圖(不完整).請你根據(jù)圖中所給的信息解答下列問題:請將以上兩幅統(tǒng)計圖補充完整;若“一般”和“優(yōu)秀”均被視為達標成績,則該校被抽取的學生中有_▲人達標;若該校學生有1200人,請你估計此次測試中,全校達標的學生有多少人?21.(10分)分式化簡:(a-)÷22.(10分)在星期一的第八節(jié)課,我校體育老師隨機抽取了九年級的總分學生進行體育中考的模擬測試,并對成績進行統(tǒng)計分析,繪制了頻數(shù)分布表和統(tǒng)計圖,按得分劃分成A、B、C、D、E、F六個等級,并繪制成如下兩幅不完整的統(tǒng)計圖表.等級得分x(分)頻數(shù)(人)A95<x≤1004B90<x≤95mC85<x≤90nD80<x≤8524E75<x≤808F70<x≤754請你根據(jù)圖表中的信息完成下列問題:(1)本次抽樣調(diào)查的樣本容量是.其中m=,n=.(2)扇形統(tǒng)計圖中,求E等級對應扇形的圓心角α的度數(shù);(3)我校九年級共有700名學生,估計體育測試成績在A、B兩個等級的人數(shù)共有多少人?(4)我校決定從本次抽取的A等級學生(記為甲、乙、丙、?。┲?,隨機選擇2名成為學校代表參加全市體能競賽,請你用列表法或畫樹狀圖的方法,求恰好抽到甲和乙的概率.23.(12分)我市在黨中央實施“精準扶貧”政策的號召下,大力開展科技扶貧工作,幫助農(nóng)民組建農(nóng)副產(chǎn)品銷售公司,某農(nóng)副產(chǎn)品的年產(chǎn)量不超過100萬件,該產(chǎn)品的生產(chǎn)費用y(萬元)與年產(chǎn)量x(萬件)之間的函數(shù)圖象是頂點為原點的拋物線的一部分(如圖①所示);該產(chǎn)品的銷售單價z(元/件)與年銷售量x(萬件)之間的函數(shù)圖象是如圖②所示的一條線段,生產(chǎn)出的產(chǎn)品都能在當年銷售完,達到產(chǎn)銷平衡,所獲毛利潤為W萬元.(毛利潤=銷售額﹣生產(chǎn)費用)(1)請直接寫出y與x以及z與x之間的函數(shù)關(guān)系式;(寫出自變量x的取值范圍)(2)求W與x之間的函數(shù)關(guān)系式;(寫出自變量x的取值范圍);并求年產(chǎn)量多少萬件時,所獲毛利潤最大?最大毛利潤是多少?(3)由于受資金的影響,今年投入生產(chǎn)的費用不會超過360萬元,今年最多可獲得多少萬元的毛利潤?24.(14分)某商場將進價為2000元的冰箱以2400元售出,平均每天能售出8臺,為了配合國家“家電下鄉(xiāng)”政策的實施,商場決定采取適當?shù)慕祪r措施.調(diào)查表明:這種冰箱的售價每降低50元,平均每天就能多售出4臺.商場要想在這種冰箱銷售中每天盈利4800元,同時又要使百姓得到實惠,每臺冰箱應降價多少元?

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】

根據(jù)方差是反映一組數(shù)據(jù)的波動大小的一個量.方差越大,則平均值的離散程度越大,穩(wěn)定性也越?。环粗?,則它與其平均值的離散程度越小,穩(wěn)定性越好可得答案.【詳解】∵0.45<0.51<0.62,∴丁成績最穩(wěn)定,故選D.【點睛】此題主要考查了方差,關(guān)鍵是掌握方差越小,穩(wěn)定性越大.2、C【解析】

解:選項A,原式=;選項B,原式=a3;選項C,原式=-2a+2=2-2a;選項D,原式=故選C3、C【解析】試題解析:A、正六邊形的外角和等于360°,是真命題;B、位似圖形必定相似,是真命題;C、樣本方差越大,數(shù)據(jù)波動越小,是假命題;D、方程x2+x+1=0無實數(shù)根,是真命題;故選:C.考點:命題與定理.4、A【解析】設(shè)(1)如果存在兩個實數(shù)p≠q,使得ap2+bp+c=aq2+bq+c,則說明在中,當x=p和x=q時的y值相等,但并不能說明此時p、q是與x軸交點的橫坐標,故①中結(jié)論不一定成立;(2)若am2+bm+c=an2+bn+c=as2+bs+c,則說明在中當x=m、n、s時,對應的y值相等,因此m、n、s中至少有兩個數(shù)是相等的,故②錯誤;(3)如果ac<0,則b2-4ac>0,則的圖象和x軸必有兩個不同的交點,所以此時一定存在兩個實數(shù)m<n,使am2+bm+c<0<an2+bn+c,故③在結(jié)論正確;(4)如果ac>0,則b2-4ac的值的正負無法確定,此時的圖象與x軸的交點情況無法確定,所以④中結(jié)論不一定成立.綜上所述,四種說法中正確的是③.故選A.5、C【解析】

根據(jù)平方根,數(shù)軸,有理數(shù)的分類逐一分析即可.【詳解】①∵-102=10,∴②數(shù)軸上的點與實數(shù)成一一對應關(guān)系,故說法正確;③∵16=4,故-2是16的平方根,故說法正確;④任何實數(shù)不是有理數(shù)就是無理數(shù),故說法正確;⑤兩個無理數(shù)的和還是無理數(shù),如2和-2⑥無理數(shù)都是無限小數(shù),故說法正確;故正確的是②③④⑥共4個;故選C.【點睛】本題考查了有理數(shù)的分類,數(shù)軸及平方根的概念,有理數(shù)都可以化為小數(shù),其中整數(shù)可以看作小數(shù)點后面是零的小數(shù),分數(shù)可以化為有限小數(shù)或無限循環(huán)小數(shù);無理數(shù)是無限不循環(huán)小數(shù),其中有開方開不盡的數(shù),如2,6、D【解析】試題分析:∵代數(shù)式有意義,∴,解得x≥0且x≠1.故選D.考點:二次根式,分式有意義的條件.7、A【解析】

(1)連接OM,OA,連接OP,作OP的垂直平分線l可得OA=MA=AP,進而得到∠O=∠AMO,∠AMP=∠MPA,所以∠OMA+∠AMP=∠O+∠MPA=90°,得出MP是⊙O的切線,(1)直角三角板的一條直角邊始終經(jīng)過點P,它的另一條直角邊過圓心O,直角頂點落在⊙O上,所以∠OMP=90°,得到MP是⊙O的切線.【詳解】證明:(1)如圖1,連接OM,OA.∵連接OP,作OP的垂直平分線l,交OP于點A,∴OA=AP.∵以點A為圓心、OA為半徑畫弧、交⊙O于點M;∴OA=MA=AP,∴∠O=∠AMO,∠AMP=∠MPA,∴∠OMA+∠AMP=∠O+∠MPA=90°,∴OM⊥MP,∴MP是⊙O的切線;(1)如圖1.∵直角三角板的一條直角邊始終經(jīng)過點P,它的另一條直角邊過圓心O,直角頂點落在⊙O上,∴∠OMP=90°,∴MP是⊙O的切線.故兩位同學的作法都正確.故選A.【點睛】本題考查了復雜的作圖,重點是運用切線的判定來說明作法的正確性.8、A【解析】

根據(jù)平行線的判定,可得AB與GE的關(guān)系,根據(jù)平行線間的距離相等,可得△BEG與△AEG的關(guān)系,根據(jù)根據(jù)勾股定理,可得AH與BE的關(guān)系,再根據(jù)勾股定理,可得BE的長,根據(jù)三角形的面積公式,可得G到BE的距離.【詳解】連接GB、GE,由已知可知∠BAE=45°.又∵GE為正方形AEFG的對角線,∴∠AEG=45°.∴AB∥GE.∵AE=4,AB與GE間的距離相等,∴GE=8,S△BEG=S△AEG=SAEFG=1.過點B作BH⊥AE于點H,∵AB=2,∴BH=AH=.∴HE=3.∴BE=2.設(shè)點G到BE的距離為h.∴S△BEG=?BE?h=×2×h=1.∴h=.即點G到BE的距離為.故選A.【點睛】本題主要考查了幾何變換綜合題.涉及正方形的性質(zhì),全等三角形的判定及性質(zhì),等積式及四點共圓周的知識,綜合性強.解題的關(guān)鍵是運用等積式及四點共圓的判定及性質(zhì)求解.9、D【解析】解:作AD⊥BC,并作出把Rt△ABC先繞B點順時針旋轉(zhuǎn)180°后所得△A1BC1,如圖所示.∵AC=2,∠ABC=10°,∴BC=4,∴AB=2,∴AD===,∴BD===1.∵點B坐標為(1,0),∴A點的坐標為(4,).∵BD=1,∴BD1=1,∴D1坐標為(﹣2,0),∴A1坐標為(﹣2,﹣).∵再向下平移2個單位,∴A′的坐標為(﹣2,﹣﹣2).故選D.點睛:本題主要考查了直角三角形的性質(zhì),勾股定理,旋轉(zhuǎn)的性質(zhì)和平移的性質(zhì),作出圖形利用旋轉(zhuǎn)的性質(zhì)和平移的性質(zhì)是解答此題的關(guān)鍵.10、B【解析】分析:直接利用合并同類項法則以及同底數(shù)冪的乘除運算法則和積的乘方運算法則分別計算得出答案.詳解:A、不是同類項,無法計算,故此選項錯誤;B、正確;C、故此選項錯誤;D、故此選項錯誤;故選:B.點睛:此題主要考查了合并同類項以及同底數(shù)冪的乘除運算和積的乘方運算,正確掌握運算法則是解題關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、1.2×10﹣1.【解析】

絕對值小于1的正數(shù)也可以利用科學記數(shù)法表示,一般形式為a×10?n,與較大數(shù)的科學記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.【詳解】解:12納米=12×0.000000001米=1.2×10?1米.故答案為1.2×10?1.【點睛】本題考查用科學記數(shù)法表示較小的數(shù),一般形式為a×10?n,其中1≤|a|<10,n為由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.12、1.1【解析】

求出EC,根據(jù)菱形的性質(zhì)得出AD∥BC,得出相似三角形,根據(jù)相似三角形的性質(zhì)得出比例式,代入求出即可.【詳解】∵DE=1,DC=3,∴EC=3-1=2,∵四邊形ABCD是菱形,∴AD∥BC,∴△DEF∽△CEB,∴,∴,∴DF=1.1,故答案為1.1.【點睛】此題主要考查了相似三角形的判定與性質(zhì),解題關(guān)鍵是根據(jù)菱形的性質(zhì)證明△DEF∽△CEB,然后根據(jù)相似三角形的性質(zhì)可求解.13、17℃.【解析】

根據(jù)返回艙的溫度為21℃±4℃,可知最高溫度為21℃+4℃;最低溫度為21℃-4℃.【詳解】解:返回艙的最高溫度為:21+4=25℃;返回艙的最低溫度為:21-4=17℃;故答案為:17℃.【點睛】本題考查正數(shù)和負數(shù)的意義.±4℃指的是比21℃高于4℃或低于4℃.14、15或255°【解析】如下圖,設(shè)直線DC′與AB相交于點E,∵Rt△ABC中,∠B=90°,AB=BC,DC′//BC,∴∠AED=∠ABC=90°,∠ADE=∠ACB=∠BAC=45°,AB=AC,∴AE=AD,又∵AD=AB,AC′=AC,∴AE=AB=AC=AC′,∴∠C′=30°,∴∠EAC′=60°,∴∠CAC′=60°-45°=15°,即當DC′∥BC時,旋轉(zhuǎn)角=15°;同理,當DC′′∥BC時,旋轉(zhuǎn)角=180°-45°-60°=255°;綜上所述,當旋轉(zhuǎn)角=15°或255°時,DC′//BC.故答案為:15°或255°.15、.【解析】

首先根據(jù)題意得出m的值,進而求出t=﹣的值即可求得答案.【詳解】∵豎直上拋的小球離地面的高度h(米)與時間t(秒)的函數(shù)關(guān)系式為h=﹣2t2+mt+,小球經(jīng)過秒落地,∴t=時,h=0,則0=﹣2×()2+m+,解得:m=,當t=﹣=﹣時,h最大,故答案為:.【點睛】本題考查了二次函數(shù)的應用,正確得出m的值是解題關(guān)鍵.16、(,),(-4,-5)【解析】

求出點A、B、C的坐標,當D在x軸下方時,設(shè)直線CD與x軸交于點E,由于∠DCB=∠ACO.所以tan∠DCB=tan∠ACO,從而可求出E的坐標,再求出CE的直線解析式,聯(lián)立拋物線即可求出D的坐標,再由對稱性即可求出D在x軸上方時的坐標.【詳解】令y=0代入y=-x2-2x+3,∴x=-3或x=1,∴OA=1,OB=3,令x=0代入y=-x2-2x+3,∴y=3,∴OC=3,當點D在x軸下方時,∴設(shè)直線CD與x軸交于點E,過點E作EG⊥CB于點G,∵OB=OC,∴∠CBO=45°,∴BG=EG,OB=OC=3,∴由勾股定理可知:BC=3,設(shè)EG=x,∴CG=3-x,∵∠DCB=∠ACO.∴tan∠DCB=tan∠ACO=,∴,∴x=,∴BE=x=,∴OE=OB-BE=,∴E(-,0),設(shè)CE的解析式為y=mx+n,交拋物線于點D2,把C(0,3)和E(-,0)代入y=mx+n,∴,解得:.∴直線CE的解析式為:y=2x+3,聯(lián)立解得:x=-4或x=0,∴D2的坐標為(-4,-5)設(shè)點E關(guān)于BC的對稱點為F,連接FB,∴∠FBC=45°,∴FB⊥OB,∴FB=BE=,∴F(-3,)設(shè)CF的解析式為y=ax+b,把C(0,3)和(-3,)代入y=ax+b解得:,∴直線CF的解析式為:y=x+3,聯(lián)立解得:x=0或x=-∴D1的坐標為(-,)故答案為(-,)或(-4,-5)【點睛】本題考查二次函數(shù)的綜合問題,解題的關(guān)鍵是根據(jù)對稱性求出相關(guān)點的坐標,利用直線解析式以及拋物線的解析式即可求出點D的坐標.17、1【解析】

根據(jù)題意,可以求得∠B的度數(shù),然后根據(jù)解直角三角形的知識可以求得NC的長,從而可以求得BC的長.【詳解】∵在Rt△ABC中,CM平分∠ACB交AB于點M,過點M作MN∥BC交AC于點N,且MN平分∠AMC,∴∠AMN=∠NMC=∠B,∠NCM=∠BCM=∠NMC,∴∠ACB=2∠B,NM=NC,∴∠B=30°,∵AN=1,∴MN=2,∴AC=AN+NC=3,∴BC=1,故答案為1.【點睛】本題考查含30°角的直角三角形、平行線的性質(zhì)、等腰三角形的判定與性質(zhì),解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.三、解答題(共7小題,滿分69分)18、線段BE的長約等于18.8cm,線段CD的長約等于10.8cm.【解析】試題分析:在Rt△BED中可先求得BE的長,過C作CF⊥AE于點F,則可求得AF的長,從而可求得EF的長,即可求得CD的長.試題解析:∵BN∥ED,∴∠NBD=∠BDE=37°,∵AE⊥DE,∴∠E=90°,∴BE=DE?tan∠BDE≈18.75(cm),如圖,過C作AE的垂線,垂足為F,∵∠FCA=∠CAM=45°,∴AF=FC=25cm,∵CD∥AE,∴四邊形CDEF為矩形,∴CD=EF,∵AE=AB+EB=35.75(cm),∴CD=EF=AE-AF≈10.8(cm),答:線段BE的長約等于18.8cm,線段CD的長約等于10.8cm.【點睛】本題考查了解直角三角形的應用,正確地添加輔助線構(gòu)造直角三角形是解題的關(guān)鍵.19、(1)見解析;(2)90°;(3)解題思路見解析.【解析】

(1)將線段AD繞點A逆時針方向旋轉(zhuǎn)90°,得到線段AE,連結(jié)EC.(2)先判定△ABD≌△ACE,即可得到,再根據(jù),即可得出;(3)連接DE,由于△ADE為等腰直角三角形,所以可求;由,,可求的度數(shù)和的度數(shù),從而可知DF的長;過點A作于點H,在Rt△ADH中,由,AD=1可求AH、DH的長;由DF、DH的長可求HF的長;在Rt△AHF中,由AH和HF,利用勾股定理可求AF的長.【詳解】解:如圖,線段AD繞點A逆時針方向旋轉(zhuǎn),得到線段AE.,,.,.,在和中,≌.,中,,,.;Ⅰ連接DE,由于為等腰直角三角形,所以可求;Ⅱ由,,可求的度數(shù)和的度數(shù),從而可知DF的長;Ⅲ過點A作于點H,在中,由,可求AH、DH的長;Ⅳ由DF、DH的長可求HF的長;Ⅴ在中,由AH和HF,利用勾股定理可求AF的長.故答案為(1)見解析;(2)90°;(3)解題思路見解析.【點睛】本題主要考查旋轉(zhuǎn)的性質(zhì),等腰直角三角形的性質(zhì)的運用,解題的關(guān)鍵是要注意對應點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角.20、(1)見解析;(2)1;(3)估計全校達標的學生有10人【解析】

(1)成績一般的學生占的百分比=1-成績優(yōu)秀的百分比-成績不合格的百分比,測試的學生總數(shù)=不合格的人數(shù)÷不合格人數(shù)的百分比,繼而求出成績優(yōu)秀的人數(shù).(2)將成績一般和優(yōu)秀的人數(shù)相加即可;(3)該校學生文明禮儀知識測試中成績達標的人數(shù)=1200×成績達標的學生所占的百分比.【詳解】解:(1)成績一般的學生占的百分比=1﹣20%﹣50%=30%,測試的學生總數(shù)=24÷20%=120人,成績優(yōu)秀的人數(shù)=120×50%=60人,所補充圖形如下所示:(2)該校被抽取的學生中達標的人數(shù)=36+60=1.(3)1200×(50%+30%)=10(人).答:估計全校達標的學生有10人.21、a-b【解析】

利用分式的基本性質(zhì)化簡即可.【詳解】===.【點睛】此題考查了分式的化簡,用到的知識點是分式的基本性質(zhì)、完全平方公式.22、(1)80,12,28;(2)36°;(3)140人;(4)【解析】

(1)用D組的頻數(shù)除以它所占的百分比得到樣本容量;用樣本容量乘以B組所占的百分比得到m的值,然后用樣本容量分別減去其它各組的頻數(shù)即可得到n的值;(2)用E組所占的百分比乘以360°得到α的值;(3)利用樣本估計整體,用700乘以A、B兩組的頻率和可估計體育測試成績在A、B兩個等級的人數(shù);(4)畫樹狀圖展示所有12種等可能的結(jié)果數(shù),再找出恰好抽到甲和乙的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】(1)24÷30%=80,所以樣本容量為80;m=80×15%=12,n=80﹣12﹣4﹣24﹣8﹣4=28;故答案為80,12,28;(2)E等級對應扇形的圓心角α的度數(shù)=×360°=36°;(3)700×=140,所以估計體

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論