2022年甘肅省平?jīng)鍪星f浪縣數(shù)學九上期末聯(lián)考試題含解析_第1頁
2022年甘肅省平?jīng)鍪星f浪縣數(shù)學九上期末聯(lián)考試題含解析_第2頁
2022年甘肅省平?jīng)鍪星f浪縣數(shù)學九上期末聯(lián)考試題含解析_第3頁
2022年甘肅省平?jīng)鍪星f浪縣數(shù)學九上期末聯(lián)考試題含解析_第4頁
2022年甘肅省平?jīng)鍪星f浪縣數(shù)學九上期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.對于反比例函數(shù)y=﹣,下列說法正確的有()①圖象經(jīng)過點(1,﹣3);②圖象分布在第二、四象限;③當x>0時,y隨x的增大而增大;④點A(x1,y1)、B(x1,y1)都在反比例函數(shù)y=﹣的圖象上,若x1<x1,則y1<y1.A.1個 B.1個 C.3個 D.4個2.如圖,在△ABC中,點D是AB邊上的一點,若∠ACD=∠B,AD=1,AC=2,△ADC的面積為1,則△BCD的面積為()A.1 B.2 C.3 D.43.已知點在拋物線上,則下列結論正確的是()A. B. C. D.4.在﹣3、﹣2、﹣1、0、1、2這六個數(shù)中,任取兩個數(shù),恰好和為﹣1的概率為()A. B. C. D.5.的半徑為,弦,,,則、間的距離是:()A. B. C.或 D.以上都不對6.在一個不透明的袋子里裝有兩個黃球和一個白球,它們除顏色外都相同,隨機從中摸出一個球,記下顏色后放回袋子中,充分搖勻后,再隨機摸出一個球.兩次都摸到黃球的概率是()A. B. C. D.7.要使二次根式有意義,則的取值范圍是()A. B.且 C. D.且8.過反比例函數(shù)圖象上一點作兩坐標軸的垂線段,則它們與兩坐標軸圍成的四邊形面積為()A.-6 B.-3 C.3 D.69.如圖,PA、PB、分別切⊙O于A、B兩點,∠P=40°,則∠C的度數(shù)為()A.40° B.140° C.70° D.80°10.如圖,在△ABC中,點D,E分別在AB,AC邊上,且DE∥BC,若AD:DB=3:2,AE=6,則EC等于()A.10 B.4 C.15 D.911.下列圖形中既是中心對稱圖形又是軸對稱圖形的是()A. B.C. D.12.如圖,正方形中,,以為圓心,長為半徑畫,點在上移動,連接,并將繞點逆時針旋轉至,連接.在點移動的過程中,長度的最小值是()A. B. C. D.二、填空題(每題4分,共24分)13.設x1,x2是方程x2+3x﹣1=0的兩個根,則x1+x2=_____.14.長度等于6的弦所對的圓心角是90°,則該圓半徑為_____.15.已知二次函數(shù)y=ax2+bx+c中,自變量x與函數(shù)y的部分對應值如下表:x…-2023…y…8003…當x=-1時,y=__________.16.“今有井徑五尺,不知其深,立五尺木于井上,從木末望水岸,入徑四寸,問井深幾何?”這是我國古代數(shù)學《九章算術》中的“井深幾何”問題,它的題意可以由圖獲得,則井深為_____尺.17.已知點P是線段AB的黃金分割點,AP>PB.若AB=1.則AP=__(結果保留根號).18.計算:sin30°+tan45°=_____.三、解答題(共78分)19.(8分)某次足球比賽,隊員甲在前場給隊友乙擲界外球.如圖所示:已知兩人相距8米,足球出手時的高度為2.4米,運行的路線是拋物線,當足球運行的水平距離為2米時,足球達到最大高度4米.請你根據(jù)圖中所建坐標系,求出拋物線的表達式.20.(8分)用適當?shù)姆椒ń夥匠蹋海?1.(8分)如圖,AC為⊙O的直徑,B為⊙O上一點,∠ACB=30°,延長CB至點D,使得CB=BD,過點D作DE⊥AC,垂足E在CA的延長線上,連接BE.(1)求證:BE是⊙O的切線;(2)當BE=3時,求圖中陰影部分的面積.22.(10分)某學校為了增強學生體質,決定開設以下體育課外活動項目:A:籃球B:乒乓球C:羽毛球D:足球,為了解學生最喜歡哪一種活動項目,隨機抽取了部分學生進行調查,并將調查結果繪制成了兩幅不完整的統(tǒng)計圖,請回答下列問題:(1)這次被調查的學生共有人;(2)請你將條形統(tǒng)計圖(2)補充完整;(3)在平時的乒乓球項目訓練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學的概率(用樹狀圖或列表法解答)23.(10分)如圖,點在的直徑的延長線上,點在上,且AC=CD,∠ACD=120°.(1)求證:是的切線;(2)若的半徑為2,求圖中陰影部分的面積.24.(10分)如圖,將矩形沿折疊,使頂點恰好落在邊的處,點落在點處,交線段于點.(1)求證:;(2)若是的中點,,,求的長.25.(12分)(1)計算:(2)若關于的方程有兩個相等的實數(shù)根,求的值.26.某網(wǎng)店銷售一種商品,其成本為每件30元.根據(jù)市場調查,當每件商品的售價為元()時,每周的銷售量(件)滿足關系式:.(1)若每周的利潤為2000元,且讓消費者得到最大的實惠,則售價應定為每件多少元?(2)當時,求每周獲得利潤的取值范圍.

參考答案一、選擇題(每題4分,共48分)1、C【解析】根據(jù)反比例函數(shù)的性質判斷即可.【詳解】解:①∵將x=1代入y=-y=﹣得,y=-3∴圖象經(jīng)過點(1,﹣3);②③∵k=-3,圖象分布在第二、四象限,在每個分支上,y隨x的增大而增大;④若點A在第二象限,點B在第四象限,則y1>y1.由此可得①②③正確,故選:C.【點睛】本題考查的是反比例函數(shù)的性質,理解熟記其性質是解決本題的關鍵.2、C【詳解】∵∠ACD=∠B,∠A=∠A,∴△ACD∽△ABC,∴,∴,∴,∴S△ABC=4,∴S△BCD=S△ABC-S△ACD=4-1=1.故選C考點:相似三角形的判定與性質.3、A【分析】分別計算自變量為1和2對應的函數(shù)值,然后對各選項進行判斷.【詳解】當x=1時,y1=?(x+1)+2=?(1+1)+2=?2;當x=2時,y=?(x+1)+2=?(2+1)+2=?7;所以.故選A【點睛】此題考查二次函數(shù)頂點式以及二次函數(shù)的性質,解題關鍵在于分析函數(shù)圖象的情況4、D【分析】畫樹狀圖展示所有15種等可能的結果數(shù),找出恰好和為-1的結果數(shù),然后根據(jù)概率公式求解.【詳解】解:畫樹狀圖為:共有15種等可能的結果數(shù),其中恰好和為-1的結果數(shù)為3,所以任取兩個數(shù),恰好和為-1的概率=.故選:D.【點睛】本題考查的是概率的問題,能夠用樹狀圖解決簡單概率問題是解題的關鍵.5、C【分析】先根據(jù)勾股定理求出OE=6,OF=8,再分AB、CD在點O的同側時,AB、CD在點O的兩側時兩種情況分別計算求出EF即可.【詳解】如圖,過點O作OF⊥CD于F,交AB于點E,∵,∴OE⊥AB,在Rt△AOE中,OA=10,AE=AB=8,∴OE=6,在Rt△COF中,OC=10,CF=CD=6,∴OF=8,當AB、CD在點O的同側時,、間的距離EF=OF-OE=8-6=2;當AB、CD在點O的兩側時,AB、CD間的距離EF=OE+OF=6+8=14,故選:C.【點睛】此題考查了圓的垂徑定理,勾股定理,在圓中通常利用垂徑定理和勾股定理求半徑、弦的一半、弦心距三者中的一個量.6、A【解析】首先根據(jù)題意畫出樹狀圖,由樹狀圖求得所有等可能的結果與兩次都摸到黃球的情況,然后利用概率公式求解即可求得答案.注意此題屬于放回實驗.【詳解】畫樹狀圖如下:由樹狀圖可知,共有9種等可能結果,其中兩次都摸到黃球的有4種結果,∴兩次都摸到黃球的概率為,故選A.【點睛】此題考查的是用列表法或樹狀圖法求概率的知識.注意畫樹狀圖與列表法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.7、D【分析】根據(jù)二次根式有意義:被開方數(shù)為非負數(shù),分式有意義:分母不為零,可得出x的取值.【詳解】解:要使二次根式有意義,則,且,故的取值范圍是:且.故選:D.【點睛】此題考查了二次根式及分式有意義的條件,屬于基礎題,解答本題的關鍵是掌握:二次根式有意義:被開方數(shù)為非負數(shù),分式有意義:分母不為零,難度一般.8、D【分析】根據(jù)反比例函數(shù)的幾何意義可知,矩形的面積為即為比例系數(shù)k的絕對值,即可得出答案.【詳解】設B點坐標為(x,y),由函數(shù)解析式可知,xy=k=-6,則可知S矩形ABCO=|xy|=|k|=6,故選:D.【點睛】本題考查了反比例函數(shù)系數(shù)k的幾何意義,關鍵是理解圖中矩形的面積為即為比例系數(shù)k的絕對值.9、C【分析】連接OA,OB根據(jù)切線的性質定理,切線垂直于過切點的半徑,即可求得∠OAP,∠OBP的度數(shù),根據(jù)四邊形的內(nèi)角和定理即可求的∠AOB的度數(shù),然后根據(jù)圓周角定理即可求解.【詳解】∵PA是圓的切線,∴同理根據(jù)四邊形內(nèi)角和定理可得:∴故選:C.【點睛】考查切線的性質以及圓周角定理,連接圓心與切點是解題的關鍵.10、B【解析】根據(jù)平行線分線段成比例定理列出比例式,計算即可.【詳解】解:∵DE∥BC,∴AEEC=ADDB解得,EC=4,故選:B.【點睛】考查的是平行線分線段成比例定理,靈活運用定理、找準對應關系是解題的關鍵.11、B【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】A、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;B、是軸對稱圖形,是中心對稱圖形,故此選項正確;C、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;D、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;故選:B.【點睛】本題主要考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.12、D【分析】通過畫圖發(fā)現(xiàn),點的運動路線為以A為圓心、1為半徑的圓,當在對角線CA上時,C最小,先證明△PBC≌△BA,則A=PC=1,再利用勾股定理求對角線CA的長,則得出C的長.【詳解】如圖,當在對角線CA上時,C最小,連接CP,

由旋轉得:BP=B,∠PB=90°,

∴∠PBC+∠CB=90°,

∵四邊形ABCD為正方形,

∴BC=BA,∠ABC=90°,

∴∠AB+∠CB=90°,

∴∠PBC=∠AB,在△PBC和△BA中,,

∴△PBC≌△BA,

∴A=PC=1,

在Rt△ABC中,AB=BC=4,由勾股定理得:,∴C=AC-A=,即C長度的最小值為,故選:D.【點睛】本題考查了正方形的性質、旋轉的性質和最小值問題,尋找點的運動軌跡是本題的關鍵.二、填空題(每題4分,共24分)13、﹣1.【分析】直接根據(jù)一元二次方程根與系數(shù)的關系求解即可.【詳解】解:∵x1,x2是方程x2+1x﹣1=0的兩個根,∴x1+x2=﹣1.故答案為﹣1.【點睛】本題考查了根與系數(shù)的關系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時,x1+x2=-,x1x2=.14、1【分析】結合等腰三角形的性質,根據(jù)勾股定理求解即可.【詳解】解:如圖AB=1,∠AOB=90°,且OA=OB,在中,根據(jù)勾股定理得,即∴,故答案為:1.【點睛】本題考查了等腰三角形的性質及勾股定理,在等腰直角三角形中靈活利用勾股定理求線段長度是解題的關鍵.15、3【解析】試題解析:將點代入,得解得:二次函數(shù)的解析式為:當時,故答案為:16、57.5【分析】根據(jù)題意有△ABF∽△ADE,再根據(jù)相似三角形的性質可求出AD的長,進而得到答案.【詳解】如圖,AE與BC交于點F,由BC//ED得△ABF∽△ADE,∴AB:AD=BF:DE,即5:AD=0.4:5,解得:AD=62.5(尺),則BD=AD-AB=62.5-5=57.5(尺)故答案為57.5.【點睛】本題主要考查相似三角形的性質:兩個三角形相似對應角相等,對應邊的比相等.17、5﹣5【分析】根據(jù)黃金分割比的定義計算即可.【詳解】根據(jù)黃金分割比,有故答案為:.【點睛】本題主要考查黃金分割比,掌握黃金分割比的定義是解題的關鍵.18、【詳解】解:sin30°+tan45°=【點睛】此題主要考察學生對特殊角的三角函數(shù)值的記憶30°、45°、60°角的各個三角函數(shù)值,必須正確、熟練地進行記憶.三、解答題(共78分)19、y=-0.4x2+4【分析】根據(jù)題意設拋物線的表達式為y=ax2+4(),代入(-2,2.4),即可求出a.【詳解】解:設y=ax2+4()∵圖象經(jīng)過(-2,2.4)∴4a+4=2.4a=-0.4∴表達式為y=-0.4x2+4【點睛】本題考查了二次函數(shù)的應用,解題的關鍵是從實際問題中抽象出二次函數(shù)模型.20、,【分析】根據(jù)因式分解法即可求解.【詳解】解:+2x-3=0(x+3)(x-1)=0x+3=0或x-1=0,.【點睛】此題主要考查一元二次方程的求解,解題的關鍵是熟知因式分解法解方程.21、(1)證明見解析;(2)【解析】(1)連接,根據(jù)和都是等腰三角形,即可得到再根據(jù)三角形的內(nèi)角和得到進而得出是⊙的切線;(2)根據(jù),,可以得到半圓的面積,即可的面積,即可得到陰影部分的面積.【詳解】解:(1)如圖所示,連接,∵,∴,∵,,∴中,,∴,∴中,,∴,∴是⊙的切線;(2)當時,,∵為⊙的直徑,∴,又∵,∴,∴,∴陰影部分的面積=半圓的面積-的面積=.22、解:(1)1.(2)補全圖形,如圖所示:(3)列表如下:

﹣﹣﹣

(乙,甲)

(丙,甲)

(丁,甲)

(甲,乙)

﹣﹣﹣

(丙,乙)

(丁,乙)

(甲,丙)

(乙,丙)

﹣﹣﹣

(丁,丙)

(甲,?。?/p>

(乙,?。?/p>

(丙,?。?/p>

﹣﹣﹣

∵所有等可能的結果為12種,其中符合要求的只有2種,∴恰好選中甲、乙兩位同學的概率為.【解析】(1)由喜歡籃球的人數(shù)除以所占的百分比即可求出總人數(shù):(人).(2)由總人數(shù)減去喜歡A,B及D的人數(shù)求出喜歡C的人數(shù),補全統(tǒng)計圖即可.(3)根據(jù)題意列出表格或畫樹狀圖,得出所有等可能的情況數(shù),找出滿足題意的情況數(shù),即可求出所求的概率.23、(1)見解析(2)圖中陰影部分的面積為π.【分析】(1)連接OC.只需證明∠OCD=90°.根據(jù)等腰三角形的性質即可證明;(2)先根據(jù)直角三角形中30°的銳角所對的直角邊是斜邊的一半求出OD,然后根據(jù)勾股定理求出CD,則陰影部分的面積即為直角三角形OCD的面積減去扇形COB的面積.【詳解】(1)證明:連接OC.∵AC=CD,∠ACD=120°,∴∠A=∠D=30°.∵OA=OC,∴∠2=∠A=30°.∴∠OCD=∠ACD-∠2=90°,即OC⊥CD,∴CD是⊙O的切線;(2)解:∠1=∠2+∠A=60°.∴S扇形BOC==.在Rt△OCD中,∠D=30°,∴OD=2OC=4,∴CD==.∴SRt△OCD=OC

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論