2023屆山東省煙臺市萊州市數(shù)學九年級第一學期期末監(jiān)測模擬試題含解析_第1頁
2023屆山東省煙臺市萊州市數(shù)學九年級第一學期期末監(jiān)測模擬試題含解析_第2頁
2023屆山東省煙臺市萊州市數(shù)學九年級第一學期期末監(jiān)測模擬試題含解析_第3頁
2023屆山東省煙臺市萊州市數(shù)學九年級第一學期期末監(jiān)測模擬試題含解析_第4頁
2023屆山東省煙臺市萊州市數(shù)學九年級第一學期期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.下列四個函數(shù)圖象中,當x>0時,函數(shù)值y隨自變量x的增大而減小的是()A. B.C. D.2.下列實數(shù):,其中最大的實數(shù)是()A.-2020 B. C. D.3.有一則笑話:媽媽正在給一對雙胞胎洗澡,先洗哥哥,再洗弟弟.剛把兩人洗完,就聽到兩個小家伙在床上笑.“你們笑什么?”媽媽問.“媽媽!”老大回答,“您給弟弟洗了兩回,可是還沒給我洗呢!”此事件發(fā)生的概率為()A. B. C. D.14.將拋物線向右平移個單位后,得到的拋物線的解析式是()A. B. C. D.5.如圖,⊙O是△ABC的外接圓,連接OC、OB,∠BOC=100°,則∠A的度數(shù)為()A.30° B.40° C.50° D.60°6.一組數(shù)據(jù)3,7,9,3,4的眾數(shù)與中位數(shù)分別是()A.3,9 B.3,3 C.3,4 D.4,77.某大學生創(chuàng)業(yè)團隊有研發(fā)、管理和操作三個小組,各組的日工資和人數(shù)如下表所示.現(xiàn)從管理組分別抽調1人到研發(fā)組和操作組,調整后與調整前相比,下列說法中不正確的是()A.團隊平均日工資不變 B.團隊日工資的方差不變C.團隊日工資的中位數(shù)不變 D.團隊日工資的極差不變8.將拋物線y=向左平移2個單位后,得到的新拋物線的解析式是()A. B.y=C.y= D.y=9.二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,則反比例函數(shù)y=與一次函數(shù)y=bx﹣c在同一坐標系內的圖象大致是()A. B. C. D.10.如圖,一段拋物線y=﹣x2+4(﹣2≤x≤2)為C1,與x軸交于A0,A1兩點,頂點為D1;將C1繞點A1旋轉180°得到C2,頂點為D2;C1與C2組成一個新的圖象,垂直于y軸的直線l與新圖象交于點P1(x1,y1),P2(x2,y2),與線段D1D2交于點P3(x3,y3),設x1,x2,x3均為正數(shù),t=x1+x2+x3,則t的取值范圍是()A.6<t≤8 B.6≤t≤8 C.10<t≤12 D.10≤t≤12二、填空題(每小題3分,共24分)11.在等腰中,,點是所在平面內一點,且,則的取值范圍是______.12.甲、乙兩名同學參加“古詩詞大賽”活動,五次比賽成績的平均分都是85分,如果甲比賽成績的方差為S甲2=16.7,乙比賽成績的方差為S乙2=28.3,那么成績比較穩(wěn)定的是_____(填甲或乙)13.如圖,圓心都在x軸正半軸上的半圓O1,半圓O2,…,半圓On均與直線l相切,設半圓O1,半圓O2,…,半圓On的半徑分別是r1,r2,…,rn,則當直線l與x軸所成銳角為30時,且r1=1時,r2017=_______.14.如圖,D是反比例函數(shù)(k<0)的圖象上一點,過D作DE⊥x軸于E,DC⊥y軸于C,一次函數(shù)y=﹣x+m與的圖象都經(jīng)過點C,與x軸分別交于A、B兩點,四邊形DCAE的面積為4,則k的值為_______.15.如圖,在等腰直角△ABC中,∠C=90°,將△ABC繞頂點A逆時針旋轉80°后得到△AB′C′,則∠CAB′的度數(shù)為_____.16.如圖,AB是⊙O的直徑,弦BC=2cm,F(xiàn)是弦BC的中點,∠ABC=60°.若動點E以2cm/s的速度從A點出發(fā)沿著A?B?A方向運動,設運動時間為t(s)(0≤t<3),連接EF,當t為_____s時,△BEF是直角三角形.17.如圖,點A、B、C、D都在⊙O上,∠ABC=90°,AD=4,CD=3,則⊙O的半徑的長是______.18.若,則的值為_______.三、解答題(共66分)19.(10分)如圖1,拋物線y=ax2+bx+c與x軸交于A(-1,0),B(3,0)兩點,與y軸交于點C.點D(2,3)在該拋物線上,直線AD與y軸相交于點E,點F是直線AD上方的拋物線上的動點.(1)求該拋物線對應的二次函數(shù)關系式;(2)當點F到直線AD距離最大時,求點F的坐標;(3)如圖2,點M是拋物線的頂點,點P的坐標為(0,n),點Q是坐標平面內一點,以A,M,P,Q為頂點的四邊形是AM為邊的矩形.①求n的值;②若點T和點Q關于AM所在直線對稱,求點T的坐標.20.(6分)先化簡,再求值:,其中x=sin45°,y=cos60°.21.(6分)如圖,已知中,,點是邊上一點,且求證:;求證:.22.(8分)已知二次函數(shù).(1)當二次函數(shù)的圖象經(jīng)過坐標原點O(0,0)時,求二次函數(shù)的解析式;(2)如圖,當m=2時,該拋物線與y軸交于點C,頂點為D,求C、D兩點的坐標;(3)在(2)的條件下,x軸上是否存在一點P,使得PC+PD最短?若P點存在,求出P點的坐標;若P點不存在,請說明理由.23.(8分)計算:(1)()(2)-14+24.(8分)如圖,在四邊形ABCD中,BD為一條對角線,AD∥BC,AD=2BC,∠ABD=90°,E為AD的中點,連接BE.(1)求證:四邊形BCDE為菱形;(2)連接AC,若AC平分∠BAD,BC=1,求AC的長.25.(10分)如圖所示,在平面直角坐標系中,過點A(﹣,0)的兩條直線分別交y軸于B、C兩點,且B、C兩點的縱坐標分別是一元二次方程x2﹣2x﹣3=0的兩個根.(1)求線段BC的長度;(2)試問:直線AC與直線AB是否垂直?請說明理由;(3)若點D在直線AC上,且DB=DC,求點D的坐標.26.(10分)已知關于x的一元二次方程.(1)求證:無論k取何值,方程總有兩個實數(shù)根;(2)若二次函數(shù)的圖象與軸兩個交點的橫坐標均為整數(shù),且k為整數(shù),求k的值.

參考答案一、選擇題(每小題3分,共30分)1、C【分析】直接根據(jù)圖象判斷,當x>0時,從左到右圖象是下降的趨勢的即為正確選項.【詳解】A、當x>0時,y隨x的增大而增大,錯誤;B、當x>0時,y隨x的增大而增大,錯誤;C、當x>0時,y隨x的增大而減小,正確;D、當x>0時,y隨x的增大先減小而后增大,錯誤;故選:C.【點睛】本題主要考查根據(jù)函數(shù)圖象判斷增減性,掌握函數(shù)的圖象和性質是解題的關鍵.2、C【解析】根據(jù)正數(shù)大于0,0大于負數(shù),正數(shù)大于負數(shù),比較即可;【詳解】∵=-2020,=-2020,=2020,=,∴,故選C.【點睛】本題主要考查了實數(shù)大小比較,掌握實數(shù)大小比較是解題的關鍵.3、A【分析】根據(jù)概率是指某件事發(fā)生的可能性為多少解答即可.【詳解】解:此事件發(fā)生的概率故選A.【點睛】本題考查了概率的意義,正確理解概率的含義是解決本題的關鍵.4、B【分析】原拋物線的頂點坐標(0,0),再把點(0,0)向右平移3個單位長度得點(0,3),然后根據(jù)頂點式寫出平移后的拋物線解析式.【詳解】解:將拋物線向右平移個單位后,得到的拋物線的解析式.故選:B【點睛】本題考查的是拋物線的平移.拋物線的平移可根據(jù)平移規(guī)律來寫,也可以移動頂點坐標,根據(jù)平移后的頂點坐標代入頂點式,即可求解.5、C【分析】直接根據(jù)圓周角定理即可得出結論.【詳解】∵⊙O是△ABC的外接圓,∠BOC=100°,∴∠A=∠BOC==50°.故選:C.【點睛】本題考查的是圓周角定理,熟知在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半是解答此題的關鍵.6、C【分析】由題意直接根據(jù)眾數(shù)和中位數(shù)的定義進行分析求解判斷即可.【詳解】解:將數(shù)據(jù)重新排列為3,3,4,7,9,∴眾數(shù)為3,中位數(shù)為4.故選:C.【點睛】本題主要考查眾數(shù)、中位數(shù),熟練掌握眾數(shù)、中位數(shù)的定義是解題的關鍵.7、B【解析】根據(jù)平均數(shù)、方差、中位數(shù)和眾數(shù)的定義分別對每一項進行分析,即可得出答案.【詳解】解:調整前的平均數(shù)是:=280;調整后的平均數(shù)是:=280;故A正確;調整前的方差是:=;調整后的方差是:=;故B錯誤;調整前:把這些數(shù)從小到大排列為:260,260,260,260,280,280,280,280,300,300,300,300;最中間兩個數(shù)的平均數(shù)是:280,則中位數(shù)是280,調整后:把這些數(shù)從小到大排列為:260,260,260,260,260,280,280,300,300,300,300,300;最中間兩個數(shù)的平均數(shù)是:280,則中位數(shù)是280,故C正確;調整前的極差是40,調整后的極差也是40,則極差不變,故D正確.故選B.【點睛】此題考查了平均數(shù)、方差、中位數(shù)和極差的概念,掌握各個數(shù)據(jù)的計算方法是關鍵.8、A【分析】按照“左加右減,上加下減”的規(guī)律,進而得出平移后拋物線的解析式即可.【詳解】解:將拋物線y=向左平移2個單位后,得到的新拋物線的解析式是:.故答案為A.【點睛】本題考查了二次函數(shù)圖像的平移法則,即掌握“左加右減,上加下減”是解答本題的關鍵.9、C【解析】根據(jù)二次函數(shù)的圖象找出a、b、c的正負,再結合反比例函數(shù)、一次函數(shù)系數(shù)與圖象的關系即可得出結論.【詳解】解:觀察二次函數(shù)圖象可知:開口向上,a>1;對稱軸大于1,>1,b<1;二次函數(shù)圖象與y軸交點在y軸的正半軸,c>1.∵反比例函數(shù)中k=﹣a<1,∴反比例函數(shù)圖象在第二、四象限內;∵一次函數(shù)y=bx﹣c中,b<1,﹣c<1,∴一次函數(shù)圖象經(jīng)過第二、三、四象限.故選C.【點睛】本題考查了二次函數(shù)的圖象、反比例函數(shù)的圖象以及一次函數(shù)的圖象,解題的關鍵是根據(jù)二次函數(shù)的圖象找出a、b、c的正負.本題屬于基礎題,難度不大,解決該題型題目時,根據(jù)二次函數(shù)圖象找出a、b、c的正負,再結合反比例函數(shù)、一次函數(shù)系數(shù)與圖象的關系即可得出結論.10、D【解析】首先證明x1+x2=8,由2≤x3≤4,推出10≤x1+x2+x3≤12即可解決問題.【詳解】翻折后的拋物線的解析式為y=(x﹣4)2﹣4=x2﹣8x+12,∵設x1,x2,x3均為正數(shù),∴點P1(x1,y1),P2(x2,y2)在第四象限,根據(jù)對稱性可知:x1+x2=8,∵2≤x3≤4,∴10≤x1+x2+x3≤12,即10≤t≤12,故選D.【點睛】本題考查二次函數(shù)與x軸的交點,二次函數(shù)的性質,拋物線的旋轉等知識,熟練掌握和靈活應用二次函數(shù)的相關性質以及旋轉的性質是解題的關鍵.二、填空題(每小題3分,共24分)11、【分析】根據(jù)題意可知點P在以AB為直徑,AB的中點O為圓心的上,然后畫出圖形,找到P點離C點距離最近的點和最遠的點,然后通過勾股定理求出OC的長度,則答案可求.【詳解】∴點P在以AB為直徑,AB的中點O為圓心的上如圖,連接CO交于點,并延長CO交于點當點P位于點時,PC的長度最小,此時當點P位于點時,PC的長度最大,此時故答案為:.【點睛】本題主要考查線段的取值范圍,能夠找到P點的運動軌跡是圓是解題的關鍵.12、甲【分析】

【詳解】∵S甲2=16.7,S乙2=28.3,∴S甲2<S乙2,∴甲的成績比較穩(wěn)定,故答案為甲.13、【詳解】分別作O1A⊥l,O2B⊥l,O3C⊥l,如圖,∵半圓O1,半圓O2,…,半圓On與直線l相切,∴O1A=r1,O2B=r2,O3C=r3,∵∠AOO1=30°,∴OO1=2O1A=2r1=2,在Rt△OO2B中,OO2=2O2B,即2+1+r2=2r2,∴r2=3,在Rt△OO2C中,OO3=2O2C,即2+1+2×3++r3=2r3,∴r3=9=32,同理可得r4=27=33,所以r2017=1.故答案為1.【點睛】本題考查了切線的性質:圓的切線垂直于經(jīng)過切點的半徑.運用切線的性質來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構造直角三角形解決有關問題.也考查了從特殊到一般的方法解決規(guī)律型問題.14、-1【詳解】解:∵的圖象經(jīng)過點C,∴C(0,1),將點C代入一次函數(shù)y=-x+m中,得m=1,∴y=-x+1,令y=0得x=1,∴A(1,0),∴S△AOC=×OA×OC=1,∵四邊形DCAE的面積為4,∴S矩形OCDE=4-1=1,∴k=-1故答案為:-1.15、125°【分析】根據(jù)等腰直角三角形的性質得到∠CAB=45°,根據(jù)旋轉的性質得到∠BAB′=80°,結合圖形計算即可.【詳解】解:∵△ABC是等腰直角三角形,∴∠CAB=45°,由旋轉的性質可知,∠BAB′=80°,∴∠CAB′=∠CAB+∠BAB′=125°,故答案為:125°.【點睛】本題考查旋轉的性質,關鍵在于熟練掌握基礎性質.16、1或1.75或2.25s【解析】試題分析:∵AB是⊙O的直徑,∴∠C=90°.∵∠ABC=60°,∴∠A=30°.又BC=3cm,∴AB=6cm.則當0≤t<3時,即點E從A到B再到O(此時和O不重合).若△BEF是直角三角形,則當∠BFE=90°時,根據(jù)垂徑定理,知點E與點O重合,即t=1;當∠BEF=90°時,則BE=BF=,此時點E走過的路程是或,則運動時間是s或s.故答案是t=1或或.考點:圓周角定理.17、2.5【分析】連接AC,根據(jù)∠ABC=90°可知AC是⊙O的直徑,故可得出∠D=90°,再由AD=4,CD=3可求出AC的長,進而得出結論.【詳解】解:如圖,連接AC,∵∠ABC=90°,

∴AC是⊙O的直徑,

∴∠D=90°,

∵AD=4,CD=3,

∴AC=5,∴⊙O的半徑=2.5,故答案為:2.5.【點睛】本題考查的是圓周角定理,熟知直徑所對的圓周角是直角是解答此題的關鍵.18、【解析】根據(jù)等式性質,等號兩邊同時加1即可解題.【詳解】解:∵,∴,即.【點睛】本題考查了分式的計算,屬于簡單題,熟悉分式的性質是解題關鍵.三、解答題(共66分)19、(1)y=-x2+2x+3;(2)F(,);(3)n=,T(0,-)或n=-,T(0,).【分析】(1)用待定系數(shù)法求解即可;(2)作FH⊥AD,過點F作FM⊥x軸,交AD與M,易知當S△FAD最大時,點F到直線AD距離FH最大,求出直線AD的解析式,設F(t,-t2+2t+3),M(t,t+1),表示出△FAD的面積,然后利用二次函數(shù)的性質求解即可;(3)分AP為對角線和AM為對角線兩種情況求解即可.【詳解】解:(1)∵拋物線x軸相交于點A(-1,0),B(3,0),∴設該拋物線對應的二次函數(shù)關系式為y=a(x+1)(x-3),∵點D(2,3)在拋物線上,∴3=a×(2+1)×(2-3),∴3=-3a,∴a=-1,∴y=-(x+1)(x-3),即y=-x2+2x+3;(2)如圖1,作FH⊥AD,過點F作FM⊥x軸,交AD與M,易知當S△FAD最大時,點F到直線AD距離FH最大,設直線AD為y=kx+b,∵A(-1,0),D(2,3),∴,∴,∴直線AD為y=x+1.設點F的橫坐標為t,則F(t,-t2+2t+3),M(t,t+1),∵S△FAD=S△AMF+S△DMF=MF(Dx-Ax)=×3(-t2+2t+3-t-1)=×3(-t2+t+2)=-(t-)2+,∴即當t=時,S△FAD最大,∵當x=時,y=-()2+2×+3=,∴F(,);(3)∵y=-x2+2x+3=-(x-1)2+4,∴頂點M(1,4).當AP為對角線時,如圖2,設拋物線對稱軸交x軸于點R,作PS⊥MR,∵∠PMS+∠AMR=90°,∠MAR+∠AMR=90°,∴∠PMA=∠MAR,∵∠PSM=∠ARM=90°,∴△PMS∽△MAR,∴,∴,∴MS=,∴OP=RS=4+=,∴n=;延長QA交y軸于T,∵PM∥AQ,∴∠MPO=∠OAM,∵∠MPS+∠MPO=90°,∠OAT+∠OAM=90°,∴∠MPS=∠OAT.又∵PS=OA=1,∠PSM=∠AOT=90°,∴△PSM≌△AOT,∴AT=PM=AQ,OT=MS=.∵AM⊥AQ,∴T和Q關于AM對稱,∴T(0,-);當AQ為對角線時,如圖3,過A作SR⊥x軸,作PS⊥SR于S,作MR⊥SR于R,∵∠RAM+∠SAP=90°,∠SAP+∠SPA=90°,∴∠RAM=∠SPA,∵∠PSA=∠ARM=90°,∴△PSA∽△ARM,∴,∴,∴AS=,∴OP=,∴n=-;延長QM交y軸于T,∵QM∥AP,∴∠APT=∠MTP,∵∠OAP+∠APT=90°,∠GMT+∠MTP=90°,∴∠OAP=∠GMT.又∵GM=OA=1,∠AOP=∠MGT=90°,∴△OAP≌△GMT,∴MT=AP=MQ,GT=OP=.∵AM⊥TQ,∴T和Q關于AM對稱,∵OT=4+=,∴T(0,).綜上可知,n=,T(0,-)或n=-,T(0,).【點睛】本題考查了待定系數(shù)法求二次函數(shù)和一次函數(shù)解析式,割補法求圖形的面積,利用二次函數(shù)求最值,相似三角形的判定與性質,全等三角形的判定與性質,矩形的性質,以及分類討論的數(shù)學思想,用到的知識點較多,難度較大,樹中考壓軸題.20、【分析】利用分式的乘法和除法進行化簡,再把x、y的值代入計算,即可得到答案.【詳解】解:原式==.當x=sin45°=,y=cos60°=時,原式=.【點睛】本題考查了特殊角的三角函數(shù)值,分式的化簡求值,以及分式的混合運算,解題的關鍵是正確的進行化簡,掌握特殊角的三角函數(shù)值.21、(1)詳見解析;(2)詳見解析【分析】(1)根據(jù)相似三角形的性質和判定定理,即可得到結論;(2)由得,進而即可得到結論.【詳解】(1),,,,即:,∴;,.∴,,即:∠DBE=90°,.【點睛】本題主要考查相似三角形的判定和性質定理以及直角三角形的性質定理,掌握兩邊對應成比例,夾角相等的兩個三角形是相似三角形,是解題的關鍵.22、(1)或;(2)C點坐標為:(0,3),D(2,-1);(3)P(,0).【分析】(1)根據(jù)二次函數(shù)的圖象經(jīng)過坐標原點O(0,0),直接代入求出m的值即可.(2)把m=2,代入求出二次函數(shù)解析式,利用配方法求出頂點坐標以及圖象與y軸交點即可.(3)根據(jù)兩點之間線段最短的性質,當P、C、D共線時PC+PD最短,利用相似三角形的判定和性質得出PO的長即可得出答案.【詳解】解:(1)∵二次函數(shù)的圖象經(jīng)過坐標原點O(0,0),∴代入得:,解得:m=±1.∴二次函數(shù)的解析式為:或.(2)∵m=2,∴二次函數(shù)為:.∴拋物線的頂點為:D(2,-1).當x=0時,y=3,∴C點坐標為:(0,3).(3)存在,當P、C、D共線時PC+PD最短.過點D作DE⊥y軸于點E,∵PO∥DE,∴△COP∽△CED.∴,即,解得:∴PC+PD最短時,P點的坐標為:P(,0).23、(1)-;(2)-.【分析】(1)根據(jù)二次根式混合運算法則計算即可;(2)代入特殊角的三角函數(shù)值,根據(jù)0指數(shù)冪、負整數(shù)指數(shù)冪、二次根式及絕對值的運算法則計算即可.【詳解】(1)()=(2-2)-6+6×=22-6+=6-4-6+=-.(2)-14+===-【點睛】本題考查實數(shù)的混合運算,熟練掌握運算法則并熟記特殊角的三角函數(shù)值是解題關鍵.24、(1)詳見解析;(2)AC=.【分析】(1)由,推出四邊形BCDE是平行四邊形,再證明即可解決問題;(2)在中只要證明即可解決問題.【詳解】(1),E為AD的中點,即四邊形BCDE是平行四邊形四邊形BCDE是菱形;(2)如圖,連接AC,AC平分在中,.【點睛】本題考查了平行四邊形的判定定理與性質、菱形的判定定理、角平分線的定義、正弦三角函數(shù)值、直角三角形的性質,熟記各定理與性質是解題關鍵.25、(1)線段BC的長度為4;(2)AC⊥AB,理由見解析;(3)點D的坐標為(﹣2,1)【解析】(1))解出方程后,即可求出B、C兩點的坐標,即可求出BC的長度;

(2)由A、B、C三點坐標可知OA2=OC?OB,所以可證明△AOC∽△BOA,利用對應角相等即可求出∠CAB=90°;

(3)容易求得直線AC的解析式,由DB=DC可知,點D在BC的垂直平分線上,所以D的縱坐標為1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論