高等數(shù)學(xué)英文版課件Lecture-10-3_第1頁
高等數(shù)學(xué)英文版課件Lecture-10-3_第2頁
高等數(shù)學(xué)英文版課件Lecture-10-3_第3頁
高等數(shù)學(xué)英文版課件Lecture-10-3_第4頁
高等數(shù)學(xué)英文版課件Lecture-10-3_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

Section10.3ApplicationofDifferentialCalculusofMultivariableFunctioninGeometry12OverviewCURVESURFACE1)Tangentlineandnormalplane2)Tangentplanesandnormallines3TheParametricEquationsofaSpaceCurveWealreadyknowthataplanecurvecanberepresentedbyaparametricbyaparametricequations,alineinspacecanbeexpressedequationsorofthevariablepointP(x,y,z).whereisthepositionvector4TheParametricEquationsofaSpaceCurveSimilarly,aspacecurveΓ

mayalsoberepresentedbyparametricequationsorvectorformiscontinuousIfthevectorvaluedfunctionthenΓissaidtobeaontheintervalcontinuouscurve;IfΓisacontinuouscurveandholdsforanyand,thenΓissaidtobeasimplecurve.5ThetangentlinetoΓThegeometricmeaningofthederivativeofthedirectionvectorr(t)att0isthatr′(t0)isthedirectionvectorofthetangenttothecurveΓatthecorrespondingpointP0.r′(t0)iscalledthetangentvectortothecurveΓatP0.P0OxyzTTheVectorequationofthetangenttothecurveΓatP0

is6TheequationofthetangentlinetocurveΓTheVectorequation:TheParametricequation:TheSymmetricequation:7ThetangentlinetoΓAcurveforwhichthedirectionofthetangentvariescontinuouslyiscalledasmoothcurve.ExampleOxyΓ2yOxΓ1piecewisesmoothcurve8ThenormalplanetoΓWehaveseenthatforagivenspacecurveΓ

if

r(t)isderivableatt0andr′(t0)≠0,thenthetangenttoΓatP0existsandisunique.ThereisaninfinitenumberofstraightlinesthroughthepointP0

,whichareperpendiculartothetangentandlieinthesameplane.TheplaneiscalledthenormalplanetothecurveΓatP0.

throughthepointP0

perpendiculartothetangenttheequationofthenormalplane9ThenormalplanetoΓTheequationofthenormalplanetothecurveΓatP0isExample

Find

theequationsofthetangentlineandthenormalplane

tothefollowingcurveΓatpointt=1.10TangentlineandnormalplanetoaspacecurveIftheequationsofthecurveΓisgiveninthegeneralformandtheaboveequationsofthecurveΓdeterminetwoimplicitfunctionsofonevariablex,y=y(x)andz=z(x)intheneighbourhoodU(P0)andbothy(x)andz(x)havecontinuousderivative.Thenthesymmetricequationofthe

tangent

atP0(x0,y0,z0)is:11Tangentlineandnormalplanetoaspacecurveandtheequationofthenormalplane

atP0(x0,y0,z0)is:

ExampleFindtheequationsofthetangentlineandthenormalplanetothecurveatpointP0(-2,1,6).122.TangentplanesandnormallinesofsurfacesNormallineTangentplane13ParametrizingAnyspacepointcanbeimaginedthatitliesonaspherewhichiscenteredattheoriginandtheradiusisIftheanglebetweentheprojectionvectoronthexOyplaneandthepositiveofdirectionofx-axisisdenotedbyθ,andandthepositivedirectionofz-axistheanglebetweenthevectorisdenotedbythenthetwocoordinatesystemarerelatedby14ParametrizingIfwedenotethesurfaceoftheanglebetweentheprojectionvectorofonthexOyplaneandthepositivedirectionofx-axisisdenotedbyθ,andThenthecoordinatecanbeexpressedbyliesonAnotherwaytoparametrizeisimaginethatanypointisalsoapointofaspacecurveoraspacesurface,thenIfwecanparametrizetheequationofthecurveorsurface.15TangentPlanesandNormalLinestoaSurfaceSupposethattheparametricequationofasurfaceSisandthepartialwhereriscontinuousinD,thepointexist,thatis,derivativesofratthepoint,thenthewecanprovethatifisdifferentiableatthepointtangentplaneofanysmoothcurveonthesurfacethroughthepointr0,withnormalvectormustlieintheplanewhichpassthroughiscalledaregularpoint).and(inthiscase,16TangentPlanesandNormalLinestoaSurfaceTherefore,thenormalvectorisThusthetangentplaneisThenormallineis17TangentPlanesandNormalLinestoaSurfaceExample

Findthetangentplaneandnormallinetotherighthelicoidatthepoint18TangentPlanesandNormalLinestoaSurfacederivativesofFareallcontinuousandthevectorsaywhichisdeterminedbyThen,thereexistsafunction,ifallthefirstorderpartialIfthesurfaceSisexpressedbyThus,thesurfaceandhascontinuouspartialderivative.ScanberepressedbyItiseasytoseethatthenwehaveor19TangentPlanesandNormalLinestoaSurfaceThenormallineis20TangentPlanesandNormalLinestoaSurface

ExampleGivenanellipsoidandaplane1)Findthetangentplanetotheellipsoidatthepo

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論