版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
AT89S52TheAT89S52isalow-power,high-performanceCMOS8-bitmicrocomputerwith8KbytesofFlashprogrammableanderasablereadonlymemory(PEROM).ThedeviceismanufacturedusingAtmel’shigh-densitynonvolatilememorytechnologyandiscompatiblewiththeindustry-standard80S51and80S52instructionsetandpinout.Theon-chipFlashallowstheprogrammemorytobereprogrammedin-systemorbyaconventionalnonvolatilememoryprogrammer.Bycombiningaversatile8-bitCPUwithFlashonamonolithicchip,theAtmelAT89S52isapowerfulmicrocomputerwhichprovidesahighly-flexibleandcost-effectivesolutiontomanyembeddedcontrolapplications.TheAT89S52providesthefollowingstandardfeatures:8KbytesofFlash,256bytesofRAM,32I/Olines,three16-bittimer/counters,asix-vectortwo-levelinterruptarchitecture,afull-duplexserialport,on-chiposcillator,andclockcircuitry.Inaddition,theAT89S52isdesignedwithstaticlogicforoperationdowntozerofrequencyandsupportstwosoftwareselectablepowersavingmodes.TheIdleModestopstheCPUwhileallowingtheRAM,timer/counters,serialport,andinterruptsystemtocontinuefunctioning.ThePower-downmodesavestheRAMcontentsbutfreezestheoscillator,disablingallotherchipfunctionsuntilthenexthardwarereset.VCC:Supplyvoltage.GND:Ground.Port0:Port0isan8-bitopendrainbi-directionalI/Oport.Asanoutputport,eachpincansinkeightTTLinputs.When1sarewrittentoport0pins,thepinscanbeusedashigh-impedanceinputs.Port0canalsobeconfiguredtobethemultiplexedlow-orderaddress/databusduringaccessestoexternalpro-gramanddatamemory.Inthismode,P0hasinternalpullups.Port0alsoreceivesthecodebytesduringFlashprogrammingandoutputsthecodebytesduringprogramverification.Externalpullupsarerequiredduringprogramverification.Port1:Port1isan8-bitbi-directionalI/Oportwithinternalpullups.ThePort1outputbufferscansink/sourcefourTTLinputs.When1sarewrittentoPort1pins,theyarepulledhighbytheinternalpullupsandcanbeusedasinputs.Asinputs,Port1pinsthatareexternallybeingpulledlowwillsourcecurrent(IIL)becauseoftheinternalpullups.Inaddition,P1.0andP1.1canbeconfiguredtobethetimer/counter2externalcountinput(P1.0/T2)andthetimer/counter2triggerinput(P1.1/T2EX),respectively,asshowninthefollowingtable.Port1alsoreceivesthelow-orderaddressbytesduringFlashprogrammingandverification.Port2:Port2isan8-bitbi-directionalI/Oportwithinternalpullups.ThePort2outputbufferscansink/sourcefourTTLinputs.When1sarewrittentoPort2pins,theyarepulledhighbytheinternalpullupsandcanbeusedasinputs.Asinputs,Port2pinsthatareexternallybeingpulledlowwillsourcecurrent(IIL)becauseoftheinternalpullups.Port2emitsthehigh-orderaddressbyteduringfetchesfromexternalprogrammemoryandduringaccessestoexternaldatamemorythatuse16-bitaddresses(MOVX@DPTR).Inthisapplication,Port2usesstronginternalpullupswhenemitting1s.Duringaccessestoexternaldatamemorythatuse8-bitaddresses(MOVX@RI),Port2emitsthecontentsoftheP2SpecialFunctionRegister.Port2alsoreceivesthehigh-orderaddressbitsandsomecontrolsignalsduringFlashprogrammingandverification.Port3:Port3isan8-bitbi-directionalI/Oportwithinternalpullups.ThePort3outputbufferscansink/sourcefourTTLinputs.When1sarewrittentoPort3pins,theyarepulledhighbytheinternalpullupsandcanbeusedasinputs.Asinputs,Port3pinsthatareexternallybeingpulledlowwillsourcecurrent(IIL)becauseofthepullups.Port3alsoservesthefunctionsofvariousspecialfeaturesoftheAT89C51,asshowninthefollowingtable.Port3alsoreceivessomecontrolsignalsforFlashprogrammingandverification.RST:Resetinput.Ahighonthispinfortwomachinecycleswhiletheoscillatorisrunningresetsthedevice.ALE/:AddressLatchEnableisanoutputpulseforlatchingthelowbyteoftheaddressduringaccessestoexternalmemory.Thispinisalsotheprogrampulseinput(PROG)duringFlashprogramming.Innormaloperation,ALEisemittedataconstantrateof1/6theoscillatorfrequencyandmaybeusedforexternaltimingorclockingpurposes.Note,however,thatoneALEpulseisskippedduringeachaccesstoexternaldatamemory.Ifdesired,ALEoperationcanbedisabledbysettingbit0ofSFRlocation8EH.Withthebitset,ALEisactiveonlyduringaMOVXorMOVCinstruction.Otherwise,thepinisweaklypulledhigh.SettingtheALE-disablebithasnoeffectifthemicrocontrollerisinexternalexecutionmode.:ProgramStoreEnableisthereadstrobetoexternalpro-grammemory.WhentheAT89S52isexecutingcodefromexternalpro-grammemory,isactivatedtwiceeachmachinecycle,exceptthattwoactivationsareskippedduringeachaccesstoexternaldatamemory./VPP:ExternalAccessEnable.mustbestrappedtoGNDinordertoenablethedevicetofetchcodefromexternalprogrammemorylocationsstartingat0000HuptoFFFFH.Note,however,thatiflockbit1isprogrammed,willbeinternallylatchedonreset.shouldbestrappedtoVccforinternalprogramexecutions.Thispinalsoreceivesthe12-voltprogrammingenablevoltage(Vpp)duringFlashprogrammingwhen12-voltprogrammingisselected.XTAL1:Inputtotheinvertingoscillatoramplifierandinputtotheinternalclockoperatingcircuit.XTAL2:Outputfromtheinvertingoscillatoramplifier.SpecialFunctionRegisters:Amapoftheon-chipmemoryareacalledtheSpecialFunctionRegister(SFR)spaceisshowninTable1.Notethatnotalloftheaddressesareoccupied,andunoccupiedaddressesmaynotbeimplementedonthechip.Readaccessestotheseaddresseswillingeneralreturnrandomdata,andwriteaccesseswillhaveanindeterminateeffect.Usersoftwareshouldnotwrite1stotheseunlistedlocations,sincetheymaybeusedinfutureproductstoinvokenewfeatures.Inthatcase,theresetorinactivevaluesofthenewbitswillalwaysbe0.Timer2RegistersControlandstatusbitsarecontainedinregistersT2CON(showninTable2)andT2MOD(showninTable4)forTimer2.Theregisterpair(RCAP2H,RCAP2L)aretheCapture/ReloadregistersforTimer2in16-bitcapturemodeor16-bitauto-reloadmode.InterruptRegistersTheindividualinterruptenablebitsareintheIEregister.TwoprioritiescanbesetforeachofthesixinterruptsourcesintheIPregister.DataMemory:TheAT89S52implements256bytesofon-chipRAM.Theupper128bytesoccupyaparalleladdressspacetotheSpecialFunctionRegisters.Thatmeanstheupper128byteshavethesameaddressesastheSFRspacebutarephysicallyseparatefromSFRspace.Whenaninstructionaccessesaninternallocationaboveaddress7FH,theaddressmodeusedintheinstructionspecifieswhethertheCPUaccessestheupper128bytesofRAMortheSFRspace.InstructionsthatusedirectaddressingaccessSFRspace.Forexample,thefollowingdirectaddressinginstructionaccessestheSFRatlocation0A0H(whichisP2).MOV0A0H,#dataInstructionsthatuseindirectaddressingaccesstheupper128bytesofRAM.Forexample,thefollowingindirectaddressinginstruction,whereR0contains0A0H,accessesthedatabyteataddress0A0H,ratherthanP2(whoseaddressis0A0H).MOV@R0,#dataNotethatstackoperationsareexamplesofindirectaddressing,sotheupper128bytesofdataRAMareavailableasstackspace.
Infrared
Infrared
(IR)
light
is
electromagnetic
radiation
with
a
wavelength
longer
than
that
of
visible
light,
measured
from
the
nominal
edge
of
visible
red
light
at
0.74
microm-etres
(μm),
and
extending
conventionally
to
300
μm.
These
wavelengths
correspond
to
a
frequency
range
of
approximately
1
to
400
THz,
and
include
most
of
the
thermal
radiation
emitted
by
objects
near
room
temperature.
Microscopically,
IR
light
is
typically
emitted
or
absorbed
by
molecules
when
they
change
their
rotational-vibrational
movements.
Infrared
light
is
used
in
industrial,
scientific,
and
medical
applications.
Night-vision
devices
using
infrared
illumination
allow
people
or
animals
to
be
observed
without
the
observer
being
detected.
In
astronomy,
imaging
at
infrared
wavelengths
allows
observation
of
objects
obscured
by
interstellar
dust.
Infrared
imaging
cameras
are
used
to
detect
heat
loss
in
insulated
systems,
observe
changing
blood
flow
in
the
skin,
and
overheating
of
electrical
apparatus.Much
of
the
energy
from
the
Sun
arrives
on
Earth
in
the
form
of
infrared
radiation.
Sunlight
at
zenith
provides
an
irradiance
of
just
over
1
kilowatt
per
square
meter
at
sea
level.
Of
this
energy,
527
watts
is
infrared
radiation,
445
watts
is
visible
light,
and
32
watts
is
ultraviolet
radiation.
The
balance
between
absorbed
and
emitted
infrared
radiation
has
a
critical
effect
on
the
Earth's
climate.
Objects
generally
emit
infrared
radiation
across
a
spectrum
of
wavelengths,
but
sometimes
only
a
limited
region
of
the
spectrum
is
of
interest
because
sensors
usually
collect
radiation
only
within
a
specific
bandwidth.
Therefore,
the
infrared
band
is
often
subdivided
into
smaller
sections.Much
of
the
energy
from
the
Sun
arrives
on
Earth
in
the
form
of
infrared
radiation.
Sunlight
at
zenith
provides
an
irradiance
of
just
over
1
kilowatt
per
square
meter
at
sea
level.
Of
this
energy,
527
watts
is
infrared
radiation,
445
watts
is
visible
light,
and
32
watts
is
ultraviolet
radiation.The
balance
between
absorbed
and
emitted
infrared
radiation
has
a
critical
effect
on
the
Earth's
climate.
Objects
generally
emit
infrared
radiation
across
a
spectrum
of
wavelengths,
but
sometimes
only
a
limited
region
of
the
spectrum
is
of
interest
because
sensors
usually
collect
radiation
only
within
a
specific
bandwidth.
Therefore,
the
infrared
band
is
often
subdivided
into
smaller
sections.Heat/Heating
Infrared
radiation
is
popularly
known
as
"heat
radiation",
but
light
and
electromagnetic
waves
of
any
frequency
will
heat
surfaces
that
absorb
them.Infraredlight
from
the
Sun
only
accounts
for
49%
of
the
heating
of
the
Earth,
with
the
rest
being
caused
by
visible
light
that
is
absorbed
then
re-radiated
at
longerwavelengths.
Visible
light
or
ultraviolet-emitting
lasers
can
char
paper
and
incandescently
hot
objects
emit
visible
radiation.
Objects
at
room
temperature
will
emit
radiation
mostly
concentrated
in
the
8
to
25
μm
band,
but
this
is
not
distinct
from
the
emission
of
visible
light
by
incandescent
objects
and
ultraviolet
by
even
hotter
objects
(see
black
body
and
Wien's
displacement
law).
Heat
is
energy
in
transient
form
that
flows
due
to
temperature
difference.
Unlike
heat
transmitted
by
thermal
conduction
or
thermal
convection,
radiation
can
propagate
through
a
vacuum.
The
concept
of
emissivity
is
important
in
understanding
the
infrared
emissions
of
objects.
This
is
a
property
of
a
surface
which
describes
how
its
thermal
emissions
deviate
from
the
ideal
of
a
black
body.
To
further
explain,
two
objects
at
the
same
physical
temperature
will
not
"appear"
the
same
temperature
in
an
infrared
image
if
they
have
differing
emissivities.ThermographyInfrared
radiation
can
be
used
to
remotely
determine
the
temperature
of
objects
(if
the
emissivity
is
known).
This
is
termed
thermography,
or
in
the
case
of
very
hot
objects
in
the
NIR
or
visible
it
is
termed
pyrometry.
Thermography
(thermal
imaging)
is
mainly
used
in
military
and
industrial
applications
but
the
technology
is
reaching
the
public
market
in
the
form
of
infrared
cameras
on
cars
due
to
the
massively
reduced
production
costs.
Thermographic.cameras
detect
radiation
in
the
infrared
range
of
the
electromagnetic
spectrum
(roughly
900–14,000
nanometers
or
0.9–14
μm)
and
produce
images
of
that
radiation.
Since
infrared
radiation
is
emitted
by
all
objects
based
on
their
temperatures,
according
to
the
black
body
radiation
law,
thermography
makes
it
possible
to
"see"
one's
environment
with
or
without
visible
illumination.
The
amount
of
radiation
emitted
by
an
object
increases
with
temperature,
therefore
thermography
allows
one
to
see
variations
in
temperature
(hence
the
name).Infrared
radiation
can
be
used
as
a
deliberate
heating
source.
For
example
it
is
used
in
infrared
saunas
to
heat
the
occupants,
and
also
to
remove
ice
from
the
wings
of
aircraft
(de-icing).
FIR
is
also
gaining
popularity
as
a
safe
heat
therapy
method
of
natural
health
care
&
physiotherapy.
Infrared
can
be
used
in
cooking
and
heating
food
as
it
predominantly
heats
the
opaque,
absorbent
objects,
rather
than
the
air
around
them.
Infrared
heating
is
also
becoming
more
popular
in
industrial
manufacturing
processes,
e.g.
curing
of
coatings,
forming
of
plastics,
annealing,
plastic
welding,
drying.
In
these
applications,
infrared
heaters
replace
convection
ovens
and
contact
heating.
Efficiency
is
achieved
by
matching
the
wavelength
of
the
infrared
heater
to
the
absorption
characteristics
of
the
material.ClimatologyIn
the
field
of
climatology,
atmospheric
infrared
radiation
is
monitored
to
detect
trends
in
the
energy
exchange
between
the
earth
and
the
atmosphere.
These
trends
provide
information
on
long
term
changes
in
the
Earth's
climate.
It
is
one
of
the
primary
parameters
studied
in
research
into
global
warming
together
with
solar
radiation.
A
pyrgeometer
is
utilized
in
this
field
of
research
to
perform
continuous
outdoor
measurements.
This
is
a
broadband
infrared
radiometer
with
sensitivity
for
infrared
radiation
between
approximately
4.5
μm
and
50
μm.
Night
vision
Infrared
is
used
in
night
vision
equipment
when
there
is
insufficient
visible
light
to
see.
Night
vision
devices
operate
through
a
process
involving
the
conversion
of
ambient
light
photons
into
electrons
which
are
then
amplified
by
a
chemical
and
electrical
process
and
then
converted
back
into
visible
light.
Infrared
light
sources
can
be
used
to
augment
the
available
ambient
light
for
conversion
by
night
vision
devices,
increasing
in-the-dark
visibility
without
actually
using
a
visible
light
source.
The
use
of
infrared
light
and
night
vision
devices
should
not
be
confused
withthermal
imaging
which
creates
images
based
on
differences
in
surface
temperature
by
detecting
infrared
radiation
(heat)
that
emanates
from
objects
and
their
surrounding
environment.Astronomy
Astronomers
observe
objects
in
the
infrared
portion
of
the
electromagnetic
spectrum
using
optical
components,
including
mirrors,
lenses
and
solid
state
digital
detectors.
For
this
reason
it
is
classified
as
part
of
optical
astronomy.
To
form
an
image,
the
components
of
an
infrared
telescope
need
to
be
carefully
shielded
from
heat
sources,
and
the
detectors
are
chilled
using
liquid
helium.
The
sensitivity
of
Earth-based
infrared
telescopes
is
significantly
limited
by
water
vapor
in
the
atmosphere,
which
absorbs
a
portion
of
the
infrared
radiation
arriving
from
space
outside
of
selected
atmospheric
windows.
This
limitation
can
be
partially
alleviated
by
placing
the
telescope
observatory
at
a
high
altitude,
or
by
carrying
the
telescope
aloft
with
a
balloon
or
an
aircraft.
Space
telescopes
do
not
suffer
from
this
handicap,
and
so
outer
space
is
considered
the
ideal
location
for
infrared
astronomy.The
infrared
portion
of
the
spectrum
has
several
useful
benefits
for
astronomers.
Cold,
dark
molecular
clouds
of
gas
and
dust
in
our
galaxy
will
glow
with
radiated
heat
as
they
are
irradiated
by
imbedded
stars.
Infrared
can
also
be
used
to
detect
protostars
before
they
begin
to
emit
visible
light.
Stars
emit
a
smaller
portion
of
their
energy
in
the
infrared
spectrum,
so
nearby
cool
objects
such
as
planets
can
be
more
readily
detected.
(In
the
visible
light
spectrum,
the
glare
from
the
star
will
drown
out
the
reflected
light
from
a
planet.)
Infrared
light
is
also
useful
for
observing
the
cores
of
active
galaxies
which
are
often
cloaked
in
gas
and
dust.
Distant
galaxies
with
a
high
redshift
will
have
the
peak
portion
of
their
spectrum
shifted
toward
longer
wavelengths,
so
they
are
more
readily
observed
in
the
infrared.
The
discovery
of
infrared
radiation
is
ascribed
to
William
Herschel,
the
astronomer,
in
the
early
19th
century.
Herschel
published
his
results
in
1800
before
the
Royal
Society
of
London.
Herschel
used
a
prism
to
refract
light
from
the
sun
and
detected
the
infrared,
beyond
the
red
part
of
the
spectrum,
through
an
increase
in
the
temperature
recorded
on
a
thermometer.
He
was
surprised
at
the
result
and
called
them
"Calorific
Rays".
The
term
'Infrared'
did
not
appear
until
late
in
the
19th
century.
The
discovery
of
infrared
radiation
is
ascribed
to
William
Herschel,
the
astronomer,
in
the
early
19th
century.
Herschel
published
his
results
in
1800
before
the
Royal
Society
of
London.
Herschel
used
a
prism
to
refract
light
from
the
sun
and
detected
the
infrared,
beyond
the
red
part
of
the
spectrum,
through
an
increase
in
the
temperature
recorded
on
a
thermometer.
He
was
surprised
at
the
result
and
called
them
"Calorific
Rays".
The
term
'Infrared'
did
not
appear
until
late
in
the
19th
century.AT89S52AT89S52是美國ATMEL公司生產的低電壓,高性能CMOS8位單片機,片內含8kbytes的可反復擦寫的只讀程序存儲器(PEROM)和256bytes的隨機存取數(shù)據(jù)存儲器(RAM)器件采用ATMEL公司的高密度、非易失性存儲技術生產,與標準MCS-51指令系統(tǒng)及8052產品引腳兼容,片內置通用8位中央處理器(CPU)和Flash存儲單元,功能強大AT89S52單片機適合于許多較為復雜控制應用場合。主要性能參數(shù)有·與MCS-51產品指令和引腳完全兼容·8k字節(jié)可重擦寫Flash閃速存儲器·1000次擦寫周期·全靜態(tài)操作:0Hz-24MHz·三級加密程序存儲器·256×8字節(jié)內部RAM·32個可編程I/O口線·3個16位定時/計數(shù)器·8個中斷源·可編程串行UART通道·低功耗空閑和掉電模式功能特性概述:AT89S52提供以下標準功能:8k字節(jié)Flash閃速存儲器,256字節(jié)內部RAM,32個I/O口線,3個16位定時/計數(shù)器,一個6向量兩級中斷結構,一個全雙工串行通信口,片內振蕩器及時鐘電路。同時,AT89S52可降至0Hz的靜態(tài)邏輯操作,并支持兩種軟件可選的節(jié)電工作模式??臻e方式停止CPU的工作,但允許RAM,定時/計數(shù)器,串行通信口及中斷系統(tǒng)繼續(xù)工作。掉電方式保存RAM中的內容,但振蕩器停止工作并禁止其它所有部件工作直到下一個硬件復位?!0口:P0口是一組8位漏極開路型雙向I/O口,也即地址/數(shù)據(jù)總線復用口。作為輸出口用時,每位能吸收電流的方式驅動8個TTL邏輯門電路,對端口P0寫“l(fā)”時,可作為高阻抗輸入端用。在訪問外部數(shù)據(jù)存儲器或程序存儲器時,這組口線分時轉換地址(低8位)和數(shù)據(jù)總線復用,在訪問期間激活內部上拉電阻。在Flash編程時,P0口接收指令字節(jié)。而在程序校驗時,輸出指令字節(jié),校驗時,要求外接上拉電阻?!1口:P1是一個帶內部上拉電阻的8位雙向I/O口,P1的輸出緩沖級可驅動(吸收或輸出電流)4個TTL邏輯門電路。對端口寫“l(fā)”,通過內部的上拉電阻把端口拉到高電平,此時可作輸入口。作輸入口使用時,因為內部存在上拉電阻,某個引腳被外部信號拉低時會輸出一個電流()。與AT89C5l不同之處是,P1.0和P1.1還可分別作為定時/計數(shù)器2的外部計數(shù)輸入(P1.0/T2)和輸入(P1.1/T2EX)。Flash編程和程序校驗期間,Pl接收低8位地址?!2口:P2是一個帶有內部上拉電阻的8位雙向I/O口,P2的輸出緩沖級可驅動(吸收或輸出電流)4個TTL邏輯門電路。對端口P2寫“l(fā)”,通過內部的上拉電阻把端口拉到高電平,此時可作輸入口,作輸入口使用時,因為內部存在上拉電阻,某個引腳被外部信號拉低時會輸出一個電流()。在訪問外部程序存儲器或16位地址的外部數(shù)據(jù)存儲器(例如執(zhí)行MOVX@DPTR指令)時,P2口送出高8位地址數(shù)據(jù)。在訪問8位地址的外部數(shù)據(jù)存儲器(如執(zhí)行MOVX@RI指令)時,P2口輸出P2鎖存器的內容。Flash編程或校驗時,P2亦接收高位地址和一些控制信號?!3口:P3口是一組帶有內部上拉電阻的8位雙向I/O口。P3口輸出緩沖級可驅動(吸收或輸出電流)4個TTL邏輯門電路。對P3口寫入“l(fā)”時,它們被內部上拉電阻拉高并可作為輸入端口。此時,被外部拉低的P3口將用上拉電阻輸出電流()。P3口除了作為一般的I/0口線外,更重要的用途是它的第二功能,。此外,P3口還接收一些用于Flash閃速存儲器編程和程序校驗的控制信號?!ST:復位輸入。當振蕩器工作時,RST引腳出現(xiàn)兩個機器周期以上高電平將使單片機復位?!LE/:當訪問外部程序存儲器或數(shù)據(jù)存儲器時,ALE(地址鎖存允許)輸出脈沖用于鎖存地址的低8位字節(jié)。一般情況下,ALE仍以時鐘振蕩頻率的l/6輸出固定的脈沖信號,因此它可對外輸出時鐘或用于定時目的。要注意的是:每當訪問外部數(shù)據(jù)存儲器時將跳過一個ALE脈沖。對Flash存儲器編程期間,該引腳還用于輸入編程脈沖()。如有必要,可通過對特殊功能寄存器(SFR)區(qū)中的8EH單元的D0位置位,可禁止ALE操作。該位置位后,只有一條MOVX和MOVC指令才能將ALE激活。此外,該引腳會被微弱拉高,單片機執(zhí)行外部程序時,應設置ALE禁止位無效?!ぃ撼绦騼Υ嬖试S()輸出是外部程序存儲器的讀選通信號,當AT89S52由外部程序存儲器取指令(或數(shù)據(jù))時,每個機器周期兩次有效,即輸出兩個脈沖。在此期間,當訪問外部數(shù)據(jù)存儲器,將跳過兩次信號?!?VPP:外部訪問允許。欲使CPU僅訪問外部程序存儲器(地址為0000H—FFFFH),端必須保持低電平(接地)。需注意的是:如果加密位LB1被編程,復位時內部會鎖存EA端狀態(tài)。如EA端為高電平(接Vcc端),CPU則執(zhí)行內部程序存儲器中的指令。Flash存儲器編程時,該引腳加上+12V的編程允許電源Vpp,當然這必須是該器件是使用12V編程電壓Vpp?!TAL1:振蕩器反相放大器的及內部時鐘發(fā)生器的輸入端?!TAL2:振蕩器反相放大器的輸出端?!ぬ厥夤δ芗拇嫫鳎涸贏T89S52片內存儲器中,80H-FFH共128個單元為特殊功能寄存器(SFR)。并非所有的地址都被定義,從80H-FFH共128個字節(jié)只有一部分被定義,還有相當一部分沒有定義。對沒有定義的單元讀寫將是無效的讀出的數(shù)值將不確定,而寫入的數(shù)據(jù)也將丟失。不應將數(shù)據(jù)“1”寫入未定義的單元,由于這些單元在將來的產品中可能賦予新的功能,在這種情況下,復位后這些單元數(shù)值總是“0”。AT89S52除了與AT89C51所有的定時/計數(shù)器0和定時/計數(shù)器l外還增加了一個定時/計數(shù)器2。定時/計數(shù)器2的控制和狀態(tài)位位于T2CON。T2MOD寄存器對(RCA02H、RCAP2L)是定時器2在16位捕獲方式或16位自動重裝載方式下的捕獲/自動重裝載寄存器?!ぶ袛嗉拇嫫鳎篈T89S52有6個中斷源,2個中斷優(yōu)先級IE寄存器控制各中斷位,IP寄存器中6個中斷源的每一個可定為2個優(yōu)先級。數(shù)據(jù)存儲器:AT89S52有256個字節(jié)的內部RAM,80H-FFH高128個字節(jié)與特殊功能寄存器(SFR)地址是重疊的,也就是高128字節(jié)的RAM和特殊功能寄存器的地址是相同的,但物理上它們是分開的。當一條指令訪問7FH以上的內部地址單元時,指令中使用的尋址方式是不同的,也即尋址方式決定是訪問高128字節(jié)RAM還是訪問特殊功能寄存器。如果指令是直接尋址方式則為訪問特殊功能寄存器。例如直接尋址指令訪問特殊功能寄存器0A0H,即P2口地址單元。MOV0A0H,#data間接尋址指令訪問高128字節(jié)RAM例如下面的間接尋址指令中R0的內容為0A0H則訪問數(shù)據(jù)字節(jié)地址為0A0H而不是P2口(0A0H)。MOV@R0,#data堆棧操作也是間接尋址方式所以高128位數(shù)據(jù)RAM亦可作為堆棧區(qū)使用。紅外光紅外(IR)是一種比可見光的波長還長的電磁輻射,從可見紅光在0.74
微米(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 贛東學院《微生物與發(fā)酵工程》2023-2024學年第一學期期末試卷
- 2022年上海審計師(初級)《審計理論與實務》考試題庫(含典型題)
- 《心電圖的臨床應用》課件
- 三年級科學上冊13風教案冀教版
- 2021年消防工程師綜合能力模擬題及答案
- 《森林環(huán)境微生物》課件
- 《信息系統(tǒng)運作》課件
- 2021年試驗檢測師(含助理)-道路工程-集料試題
- 2021年度證券從業(yè)資格證券發(fā)行與承銷預熱階段綜合測試題(含答案)
- 國家安全線上教育課件
- 項目財務核算業(yè)務藍圖
- 8.臺球助教速成培訓手冊0.9萬字
- 深圳京基·KKmall市場考察報告(45頁
- 無縫鋼管焊接作業(yè)指導書(1)
- 零缺陷與質量成本
- 國家開放大學電大本科《西方社會學》2023-2024期末試題及答案(試卷代號:1296)
- JBT5323-91立體倉庫焊接式鋼結構貨架 技術條件
- 網吧企業(yè)章程范本
- 60m3臥式液化石油氣儲罐設計
- 命題多維細目表()卷
- 安徽省書法家協(xié)會會員登記表
評論
0/150
提交評論