福建省龍巖市武平一中、長汀一中、漳平一中等六校2024學(xué)年高二上數(shù)學(xué)期末檢測模擬試題含解析_第1頁
福建省龍巖市武平一中、長汀一中、漳平一中等六校2024學(xué)年高二上數(shù)學(xué)期末檢測模擬試題含解析_第2頁
福建省龍巖市武平一中、長汀一中、漳平一中等六校2024學(xué)年高二上數(shù)學(xué)期末檢測模擬試題含解析_第3頁
福建省龍巖市武平一中、長汀一中、漳平一中等六校2024學(xué)年高二上數(shù)學(xué)期末檢測模擬試題含解析_第4頁
福建省龍巖市武平一中、長汀一中、漳平一中等六校2024學(xué)年高二上數(shù)學(xué)期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

福建省龍巖市武平一中、長汀一中、漳平一中等六校2024學(xué)年高二上數(shù)學(xué)期末檢測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若直線與曲線只有一個公共點,則m的取值范圍是()A. B.C.或 D.或2.已知拋物線的焦點為F,點P為該拋物線上的動點,若,則當(dāng)最大時,()A. B.1C. D.23.函數(shù)區(qū)間上有()A.極大值為27,極小值為-5 B.無極大值,極小值為-5C.極大值為27,無極小值 D.無極大值,無極小值4.為迎接第24屆冬季奧運會,某校安排甲、乙、丙、丁、戊共5名學(xué)生擔(dān)任冰球、冰壺和短道速滑三個項目的志愿者,每個比賽項目至少安排1人,每人只能安排到1個項目,則所有排法的總數(shù)為()A.60 B.120C.150 D.2405.已知數(shù)列通項公式,則()A.6 B.13C.21 D.316.“楊輝三角”是中國古代重要的數(shù)學(xué)成就,它比西方的“帕斯卡三角形”早了多年,如圖是由“楊輝三角”拓展而成的三角形數(shù)陣,記為圖中虛線上的數(shù),,,,…構(gòu)成的數(shù)列的第項,則的值為()A. B.C. D.7.橢圓的長軸長是短軸長的2倍,則離心率()A. B.C. D.8.即空氣質(zhì)量指數(shù),越小,表明空氣質(zhì)量越好,當(dāng)不大于100時稱空氣質(zhì)量為“優(yōu)良”.如圖是某市3月1日到12日的統(tǒng)計數(shù)據(jù).則下列敘述正確的是A.這天的的中位數(shù)是B.天中超過天空氣質(zhì)量為“優(yōu)良”C.從3月4日到9日,空氣質(zhì)量越來越好D.這天的的平均值為9.在空間直角坐標(biāo)系中,點關(guān)于軸的對稱點為點,則點到直線的距離為()A. B.C. D.610.設(shè)函數(shù)在上可導(dǎo),則等于()A. B.C. D.以上都不對11.如圖,我市某地一拱橋垂直軸截面是拋物線,已知水利人員在某個時刻測得水面寬,則此時刻拱橋的最高點到水面的距離為()A. B.C. D.12.試在拋物線上求一點,使其到焦點的距離與到的距離之和最小,則該點坐標(biāo)為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.過橢圓的右焦點作兩條相互垂直的直線m,n,直線m與橢圓交于A,B兩點,直線n與橢圓交于C,D兩點,若.則下列方程①;②;③;④.其中可以作為直線AB的方程的是______(寫出所有正確答案的序號)14.已知過橢圓上的動點作圓(為圓心):的兩條切線,切點分別為,若的最小值為,則橢圓的離心率為______15.以點為圓心,且與直線相切的圓的方程是__________16.已知兩平行直線與間的距離為3,則C的值是________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,直角梯形AEFB與菱形ABCD所在平面互相垂直,,,,,,M為AD中點.(1)證明:直線面DEF;(2)求二面角的余弦值.18.(12分)已知橢圓與橢圓的焦點相同,且橢圓C過點(1)求橢圓C的方程;(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓C恒有兩個交點A,B,且(O為坐標(biāo)原點),若存在,求出該圓的方程;若不存在,說明理由19.(12分)已知圓,直線(1)求證:對,直線l與圓C總有兩個不同交點;(2)當(dāng)時,求直線l被圓C截得的弦長20.(12分)設(shè)Sn是等差數(shù)列{an}的前n項和,已知,S2=-3.(1)求{an}的通項公式;(2)若,求數(shù)列{bn}的前n項和Tn.21.(12分)如圖,正方體的棱長為2,點為的中點.(1)求直線與平面所成角的正弦值;(2)求點到平面的距離.22.(10分)已知三棱柱中,.(1)求證:平面平面.(2)若,在線段上是否存在一點使平面和平面所成角的余弦值為若存在,確定點的位置;若不存在,說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解題分析】根據(jù)曲線方程的特征,發(fā)現(xiàn)曲線表示在軸上方的圖象,畫出圖形,根據(jù)圖形上直線的三個特殊位置,當(dāng)已知直線位于直線位置時,把已知直線的解析式代入橢圓方程中,消去得到關(guān)于的一元二次方程,由題意可知根的判別式等于0即可求出此時對應(yīng)的的值;當(dāng)已知直線位于直線及直線的位置時,分別求出對應(yīng)的的值,寫出滿足題意得的范圍,綜上,得到所有滿足題意得的取值范圍【題目詳解】根據(jù)曲線,得到,解得:;,畫出曲線的圖象,為橢圓在軸上邊的一部分,如圖所示:當(dāng)直線在直線的位置時,直線與橢圓相切,故只有一個交點,把直線代入橢圓方程得:,得到,即,化簡得:,解得或(舍去),則時,直線與曲線只有一個公共點;當(dāng)直線在直線位置時,直線與曲線剛好有兩個交點,此時,當(dāng)直線在直線位置時,直線與曲線只有一個公共點,此時,則當(dāng)時,直線與曲線只有一個公共點,綜上,滿足題意得的范圍是或故選:D2、B【解題分析】根據(jù)拋物線的定義,結(jié)合換元法、配方法進行求解即可.【題目詳解】因為點P為該拋物線上的動點,所以點P的坐標(biāo)設(shè)為,拋物線的焦點為F,所以,拋物線的準(zhǔn)線方程為:,因此,令,,當(dāng)時,即當(dāng)時,有最大值,最大值為1,此時.故選:B3、B【解題分析】求出得出的單調(diào)區(qū)間,從而可得答案.【題目詳解】當(dāng)時,,單調(diào)遞減.當(dāng)時,,單調(diào)遞增.所以當(dāng)時,取得極小值,極小值為,無極大值.故選:B4、C【解題分析】結(jié)合排列組合的知識,分兩種情況求解.【題目詳解】當(dāng)分組為1人,1人,3人時,有種,當(dāng)分組為1人,2人,2人時有種,所以共有種排法.故選:C5、C【解題分析】令即得解.【題目詳解】解:令得.故選:C6、B【解題分析】根據(jù)楊輝三角可得數(shù)列的遞推公式,結(jié)合累加法可得數(shù)列的通項公式與.【題目詳解】由已知可得數(shù)列的遞推公式為,且,且,故,,,,,等式左右兩邊分別相加得,,故選:B.7、D【解題分析】根據(jù)長軸長是短軸長的2倍,得到,利用離心率公式即可求得答案.【題目詳解】∵,∴,故,故選:D8、C【解題分析】這12天的AQI指數(shù)值的中位數(shù)是,故A不正確;這12天中,空氣質(zhì)量為“優(yōu)良”的有95,85,77,67,72,92共6天,故B不正確;;從4日到9日,空氣質(zhì)量越來越好,,故C正確;這12天的指數(shù)值的平均值為110,故D不正確.故選C9、C【解題分析】按照空間中點到直線的距離公式直接求解.【題目詳解】由題意,,,的方向向量,,則點到直線的距離為.故選:C.10、C【解題分析】根據(jù)目標(biāo)式,結(jié)合導(dǎo)數(shù)的定義即可得結(jié)果.【題目詳解】.故選:C11、D【解題分析】代入計算即可.【題目詳解】設(shè)B點的坐標(biāo)為,由拋物線方程得,則此時刻拱橋的最高點到水面的距離為2米.故選:D12、A【解題分析】由題意得拋物線的焦點為,準(zhǔn)線方程為過點P作于點,由定義可得,所以,由圖形可得,當(dāng)三點共線時,最小,此時故點的縱坐標(biāo)為1,所以橫坐標(biāo).即點P的坐標(biāo)為.選A點睛:與拋物線有關(guān)的最值問題的解題策略該類問題一般解法是利用拋物線的定義,實現(xiàn)由點到點的距離與點到直線的距離的轉(zhuǎn)化(1)將拋物線上的點到準(zhǔn)線的距離轉(zhuǎn)化為該點到焦點的距離,構(gòu)造出“兩點之間線段最短”,使問題得解;(2)將拋物線上的點到焦點的距離轉(zhuǎn)化為點到準(zhǔn)線的距離,利用“與直線上所有點的連線中的垂線段最短”解決二、填空題:本題共4小題,每小題5分,共20分。13、①②【解題分析】①②結(jié)合橢圓方程得到與橢圓參數(shù)的關(guān)系,即可判斷;③④聯(lián)立直線與橢圓方程,利用弦長公式求,即可判斷.【題目詳解】由題設(shè),且右焦點為,①時直線,故,則符合題設(shè);②時,同①知:符合題設(shè);③時直線,聯(lián)立直線AB與橢圓方程并整理得:,則,同理可得,則,不合題設(shè);④時,同③分析知:,不合題設(shè);故答案為:①②.14、【解題分析】由橢圓方程和圓的方程可確定橢圓焦點、圓心和半徑;當(dāng)最小時,可知,此時;根據(jù)橢圓性質(zhì)知,解方程可求得,進而得到離心率.【題目詳解】由橢圓方程知其右焦點為;由圓的方程知:圓心為,半徑為;當(dāng)最小時,則最小,即,此時最?。淮藭r,;為橢圓右頂點時,,解得:,橢圓的離心率.故答案為:.15、;【解題分析】根據(jù)相切可得圓心到直線距離即為圓的半徑,利用點到直線距離公式解出半徑,即可得到圓的方程【題目詳解】由題,設(shè)圓心到直線的距離為,所以,因為圓與直線相切,則,所以圓的方程為,故答案為:【題目點撥】本題考查利用直線與圓的位置關(guān)系求圓的方程,考查點到直線距離公式的應(yīng)用16、【解題分析】根據(jù)兩條平行直線之間的距離公式即可得解.【題目詳解】兩平行直線與間的距離為3,所以,所以故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解題分析】(1)由平面平面ABCD,可得平面ABCD,連接BD,可得,以為原點,為軸,豎直向上為軸建立空間直角坐標(biāo)系,利用向量法計算與平面的法向量的數(shù)量積為0即可得證;(2)分別計算出平面和平面的法向量,然后利用向量夾角公式即可求解.【小問1詳解】證明:因為平面平面ABCD,平面平面ABCD,且,所以平面ABCD,連接BD,則等邊三角形,所以,以為原點,為軸,豎直向上為軸建立如圖所示的空間直角坐標(biāo)系,則,設(shè)為平面的法向量,因為,則有,取,又因為,所以,因為平面,所以平面;【小問2詳解】解:分別設(shè)為平面和平面的法向量,因為,則有,取,因,則有,取,所以,由圖可知二面角為銳二面角,所以二面角的余弦值為.18、(1);(2)存在,.【解題分析】(1)與焦點相同可求出c,將代入方程結(jié)合a、b、c關(guān)系即可求a和b;(2)直線AB斜率存在時,設(shè)直線AB的方程為,聯(lián)立AB方程與橢圓方程,得到根與系數(shù)的關(guān)系;由得,結(jié)合韋達定理得k與m的關(guān)系;再由圓與直線相切,即可求其半徑;最后再驗證AB斜率不存在時的情況即可.【小問1詳解】,由題可知,解得點,所以橢圓的方程為;【小問2詳解】設(shè),設(shè),代入,整理得,由得,即,由韋達定理化簡得,即,設(shè)存在圓與直線相切,則,解得,所以圓的方程為,又若軸時,檢驗知滿足條件,故存在圓心在原點的圓符合題意19、(1)證明見解析;(2).【解題分析】(1)由直線過定點,只需判斷定點在圓內(nèi)部,即可證結(jié)論.(2)由點線距離公式求弦心距,再利用半徑、弦心距、弦長的幾何關(guān)系求弦長即可.【小問1詳解】直線恒過定點,又,所以點在圓的內(nèi)部,所以直線與圓總有兩個不同的交點,得證.【小問2詳解】由題設(shè),,又的圓心為,半徑為,所以到直線的距離,所以所求弦長為20、(1);(2)【解題分析】(1)根據(jù)所給條件列出方程組,求得,即可求得答案;(2)根據(jù)(1)的結(jié)果,寫出,利用等比數(shù)列的前n項和公式求得答案.【小問1詳解】設(shè)等差數(shù)列{an}公差為d,由,得解得所以(n∈N*);【小問2詳解】由(1)可知,故,所以21、(1)(2)【解題分析】(1)建立空間直角坐標(biāo)系,求出平面的一個法向量及,利用向量的夾角公式即可得解;(2)直接利用向量公式求解即可【小問1詳解】解:以點作坐標(biāo)原點,建立如圖所示的空間直角坐標(biāo)系,則,0,,,2,,,0,,,0,,設(shè)平面的一個法向量為,又,則,則可取,又,設(shè)直線與平面的夾角為,則,直線與平面的正弦值為;【小問2詳解】解:因為所以點到平面的距離為,點到平面的距離為22、(1)證明見解析;(2)在線段上存在一點,且P是靠近C的四等分點.【解題分析】(1)連接,根據(jù)給定條件證明平面得即可推理作答.(2)在平面內(nèi)過C作,再以C為原點,射線CA,CB,Cz分別為x,y,z軸正半軸建立空間直角坐標(biāo)系,利用空間向量計算判斷作答.【小問1詳解】在

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論