版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
中英文資料PAGE29中英文資料外文翻譯文獻(xiàn)基于改進(jìn)的灰色預(yù)測(cè)模型的電力負(fù)荷預(yù)測(cè)[摘要]盡管灰色預(yù)測(cè)模型已經(jīng)被成功地運(yùn)用在很多領(lǐng)域,但是文獻(xiàn)顯示其性能仍能被提高。為此,本文為短期負(fù)荷預(yù)測(cè)提出了一個(gè)GM(1,1)—關(guān)于改進(jìn)的遺傳算法(GM(1,1)-IGA)。由于傳統(tǒng)的GM(1,1)預(yù)測(cè)模型是不準(zhǔn)確的而且參數(shù)的值是恒定的,為了解決這個(gè)問題并提高短期負(fù)荷預(yù)測(cè)的準(zhǔn)確性,改進(jìn)的十進(jìn)制編碼遺傳算法(GA)適用于探求灰色模型GM(1,1)的最佳值。并且,本文還提出了單點(diǎn)線性算術(shù)交叉法,它能極大地改善交叉和變異的速度。最后,用一個(gè)日負(fù)荷預(yù)測(cè)的例子來比較GM(1,1)-IGA模型和傳統(tǒng)的GM(1,1)模型,結(jié)果顯示GM(1,1)-IGA擁有更好地準(zhǔn)確性和實(shí)用性。關(guān)鍵詞:短期的負(fù)荷預(yù)測(cè),灰色系統(tǒng),遺傳算法,單點(diǎn)線性算術(shù)交叉法第一章緒論日峰值負(fù)荷預(yù)測(cè)對(duì)電力系統(tǒng)的經(jīng)濟(jì),可靠和安全戰(zhàn)略都起著非常重要的作用。特別是用于每日用電量的短期負(fù)荷預(yù)測(cè)(STLF)決定著發(fā)動(dòng)機(jī)運(yùn)行,維修,功率互換和發(fā)電和配電任務(wù)的調(diào)度。短期負(fù)荷預(yù)測(cè)(STLF)旨在預(yù)測(cè)數(shù)分鐘,數(shù)小時(shí),數(shù)天或者數(shù)周時(shí)期內(nèi)的電力負(fù)荷。從一個(gè)小時(shí)到數(shù)天以上不等時(shí)間范圍的短期負(fù)荷預(yù)測(cè)的準(zhǔn)確性對(duì)每一個(gè)電力單位的運(yùn)行效率有著重要的影響,因?yàn)樵S多運(yùn)行決策,比如:合理的發(fā)電量計(jì)劃,發(fā)動(dòng)機(jī)運(yùn)行,燃料采購計(jì)劃表,還有系統(tǒng)安全評(píng)估,都是依據(jù)這些預(yù)測(cè)。傳統(tǒng)的負(fù)荷預(yù)測(cè)模型被分為時(shí)間序列模型和回歸模型。通常,這些模型對(duì)于日常的短期負(fù)荷預(yù)測(cè)是有效的,但是對(duì)于那些特別的日子就會(huì)產(chǎn)生不準(zhǔn)確的結(jié)果。此外,由于它們的復(fù)雜性,為了獲得比較滿意的結(jié)果需要大量的計(jì)算工作?;疑到y(tǒng)理論最早是由鄧聚龍?zhí)岢鰜淼模饕悄P偷牟淮_定性和信息不完整的分析,對(duì)系統(tǒng)研究條件的分析,預(yù)測(cè)以及決策?;疑到y(tǒng)讓每一個(gè)隨機(jī)變量作為一個(gè)在某一特定范圍內(nèi)變化的灰色量。它不依賴于統(tǒng)計(jì)學(xué)方法來處理灰色量。它直接處理原始數(shù)據(jù),來尋找數(shù)據(jù)內(nèi)在的規(guī)律?;疑A(yù)測(cè)模型運(yùn)用灰色系統(tǒng)理論的基本部分。此外,灰色預(yù)測(cè)可以說是利用介于白色系統(tǒng)和黑色系統(tǒng)之間的灰色系統(tǒng)來進(jìn)行估計(jì)。信息完全已知的系統(tǒng)稱為白色系統(tǒng);相反地,信息完全未知的系統(tǒng)稱為黑色系統(tǒng)?;疑P虶M(1,1)(即一階單變量灰色模型)是灰色理論預(yù)測(cè)中主要的模型,由少量數(shù)據(jù)(4個(gè)或更多)建立,仍然可以得到很好地預(yù)測(cè)結(jié)果?;疑A(yù)測(cè)模型組成部分是灰色微分方程組——特性參數(shù)變化的非常態(tài)微分方程組,或者灰色差分方程組——結(jié)構(gòu)變化的非常態(tài)差分方程組,而不是一階微分方程組或者常規(guī)情況下的差分方程組?;疑P虶M(1,1)有一個(gè)參數(shù),它在很多文章里經(jīng)常被設(shè)為0.5,這個(gè)常數(shù)可能不是最理想的,因?yàn)椴煌膯栴}可能需要不同的值,否則可能產(chǎn)生錯(cuò)誤的結(jié)果。為了修正前面提到的錯(cuò)誤,本文嘗試用遺傳算法來估算值。JohnHolland首先描述了遺傳算法(GA),以一個(gè)抽象的生物進(jìn)化來提出它們,并且給出了一個(gè)理論的數(shù)學(xué)框架作為歸化。一個(gè)遺傳算法相對(duì)于其他函數(shù)優(yōu)化方法的顯著特征是尋找一個(gè)最佳的解決方案來著手,此方案不是以一個(gè)單一逐次改變的結(jié)構(gòu),而是給出一組使用遺傳算子來建立新結(jié)構(gòu)的解決措施。通常,二進(jìn)制表示法應(yīng)用于許多優(yōu)化問題,但是本文的遺傳算法(GA)采用改進(jìn)的十進(jìn)制編碼表示方案。本文打算用改進(jìn)的遺傳算法(GM(1,1)-IGA)來解決電力系統(tǒng)中短期負(fù)荷預(yù)測(cè)(STLF)中遇到的問題。傳統(tǒng)的GM(1,1)預(yù)測(cè)模型經(jīng)常設(shè)定參數(shù)為0.5,因此背景值可能不準(zhǔn)確。為了克服以上弊端,用改進(jìn)的十進(jìn)制編碼的遺傳算法來獲得理想的參數(shù)值,從而得到較準(zhǔn)確的背景值。而且,提出了單點(diǎn)線性算術(shù)交叉法。它能極大地改善交叉和變異的速度,使提出的GM(1,1)-IGA能更準(zhǔn)確地預(yù)測(cè)短期日負(fù)荷。本文結(jié)構(gòu)如下:第二章介紹灰色預(yù)測(cè)模型GM(1,1);第三章用改進(jìn)的遺傳算法來估算;第四章提出了GM(1,1)-IGA來實(shí)現(xiàn)短期日負(fù)荷預(yù)測(cè);最后,第五章得出結(jié)論。第二章灰色預(yù)測(cè)模型GM(1,1)本章重點(diǎn)介紹灰色預(yù)測(cè)的機(jī)理?;疑P虶M(1,1)是時(shí)間序列預(yù)測(cè)模型,它有3個(gè)基本步驟:(1)累加生成,(2)累減生成,(3)灰色建模。灰色預(yù)測(cè)模型利用累加的原理來創(chuàng)建微分方程。本質(zhì)上講,它的特點(diǎn)是需要很少的數(shù)據(jù)。灰色模型GM(1,1),例如:?jiǎn)巫兞恳浑A灰色模型,總結(jié)如下:第一步:記原始數(shù)列:=是n階離散序列。是m次時(shí)間序列,但m必須大于等于4。在原始序列的基礎(chǔ)上,通過累加的過程形成了一個(gè)新的序列。而累加的目的是提供構(gòu)建模型的中間數(shù)據(jù)和減弱變化趨勢(shì)。定義如下:有,則是r次累加序列。第二步:設(shè)定值來預(yù)測(cè)通過GM(1,1),我們可以建立下面的一階灰色微分方程:它的差分方程是。a稱為發(fā)展系數(shù),b稱為控制變量。以微分的形式表示導(dǎo)數(shù)項(xiàng),我們可以得到:在一個(gè)灰色GM(1,1)模型建立前,一個(gè)適當(dāng)?shù)闹敌枰o出以得到一個(gè)好的背景值。背景值序列定義如下:其中,為方便起見,值一般被設(shè)為0.5,推導(dǎo)如下:然而,這個(gè)常量可能不是最理想的,因?yàn)椴煌膱?chǎng)合可能需要不同的值。而且,不管是發(fā)展系數(shù)a還是控制變量b都由值確定。由于系數(shù)是常量,原始灰色信息的白化過程可能被抑制。因此,GM(1,1)模型中預(yù)測(cè)值的準(zhǔn)確性將會(huì)嚴(yán)重的降低。為了修正以上不足,系數(shù)必須是基于問題特征的變量,因此我們用遺傳算法來估算值。第三步:構(gòu)建累加矩陣B和系數(shù)向量。應(yīng)用普通最小二乘法(OLS)來獲得發(fā)展系數(shù)a,b。如下:于是有第四步:獲得一階灰色微分方程的離散形式,如下:解得為為第三章運(yùn)用改進(jìn)GA估算值為了預(yù)測(cè)出準(zhǔn)確的灰色模型GM(1,1),殘差校驗(yàn)是必不可少的。因此,本文中所提出的目標(biāo)函數(shù)的方法可以確保預(yù)測(cè)值誤差是最小。目標(biāo)函數(shù)定義為最小平均絕對(duì)百分比誤差,如下:且,為原始數(shù)據(jù),為預(yù)測(cè)值,n是該數(shù)列的維數(shù)。從上面描述構(gòu)建的GM(1,1),我們可以得到:在GM(1,1)中參數(shù)的值能夠決定的值;不管是發(fā)展系數(shù)a還是控制變量b都由值確定。更重要的是,的結(jié)果由a,b決定,因此整個(gè)模型選擇過程最重要的部分就是的值。在和殘差之間有著某些復(fù)雜的非線性關(guān)系,這些非線性是很難通過解析來解決的,因此選擇最理想的值是GM(1,1)的難點(diǎn)。遺傳算法是一個(gè)隨機(jī)搜索算法,模擬自然選擇與演化。它能廣泛應(yīng)用正是基于后面兩個(gè)基本方面:計(jì)算代碼非常簡(jiǎn)單并且還提供了一個(gè)強(qiáng)大的搜索機(jī)制。它們函數(shù)相對(duì)獨(dú)立,意味著它們不會(huì)被函數(shù)的屬性所限制,例如:連續(xù)性,導(dǎo)數(shù)的存在,等等。盡管二進(jìn)制法經(jīng)常應(yīng)用于許多優(yōu)化問題,但是在本文我們采用改進(jìn)十進(jìn)制編碼法方案來解決。在數(shù)值函數(shù)優(yōu)化方面,改進(jìn)的十進(jìn)制編碼法相對(duì)于二進(jìn)制編碼法擁有很大的優(yōu)勢(shì)。這些優(yōu)勢(shì)簡(jiǎn)要的敘述如下:第一步:GA的效率提高了,因此,沒有必要將染色體轉(zhuǎn)換為二進(jìn)制類型。第二步:由于有效的內(nèi)部電腦浮點(diǎn)表示,需要較少的內(nèi)存。第三步:甄別二進(jìn)制或其它值不會(huì)使精度降低,并且有更大的自由來使用不同的遺傳算子。我們利用改進(jìn)的十進(jìn)制碼代表性方法來尋找在灰色GM(1,1)模型中最佳系數(shù)的值。本文中,我們提出單點(diǎn)線性算術(shù)交叉法,并且利用它來獲得值;它能極大地提高交叉和變異的速度。改進(jìn)的十進(jìn)制碼代表性方法的步驟如下:(1)編碼:假設(shè)是二進(jìn)制字符串的C位,然后由右至左每隔n位轉(zhuǎn)換為十進(jìn)制。(n<C,n和C的值要確保精度)(2)隨機(jī)化種群:選擇一個(gè)整數(shù)M作為種族的大小,然后隨機(jī)地從集合選擇M點(diǎn),如,這些點(diǎn)組成個(gè)體的原始種群,該序列被定義為:(3)評(píng)估適應(yīng)度:在選擇的過程中,個(gè)體被選擇參與新個(gè)體的繁殖。擁有高度地適應(yīng)度F()的個(gè)體逐代衍化和發(fā)展。適應(yīng)度函數(shù)是是從個(gè)體獲得的預(yù)測(cè)值。是迭代最小二乘總和的最大值。第四步:選擇:在本文中,我們根據(jù)它們的適應(yīng)度函數(shù)分別地計(jì)算出個(gè)體選定的概率,然后我們通過輪盤選擇法,使繁殖的各自概率是,最后我們拿原始的個(gè)體來生成下一代的。第五步:交叉和變異:編碼和交叉是相關(guān)的;我們利用了十進(jìn)制碼表示法,因此我們提出了一種新的交叉算子“單點(diǎn)線性算術(shù)交叉”。1)選擇合適的兩個(gè)有交叉概率的個(gè)體。2)為這兩個(gè)選擇的個(gè)體,我們?nèi)匀徊捎秒S機(jī)抽樣方法以得到交叉算子。例如:3)交叉①互相交換它們的正確的字符串。②位在左側(cè)的交叉可以通過以下計(jì)算算法:a:基因分析:b:交換后基因:稱為交叉系數(shù),每次根據(jù)隨機(jī)的交叉系統(tǒng)來選擇。4)變異:下面是一個(gè)新的變異方案:當(dāng)變異算子被選擇,新的基因值是一個(gè)在域權(quán)重的隨機(jī)數(shù),它是用原始基因值得到的加權(quán)總和。如果變異算子的值是,變異值是:是變異系數(shù),。r是一個(gè)隨機(jī)數(shù),。每當(dāng)進(jìn)行變異操作時(shí),r會(huì)被隨機(jī)的挑選。因此,新的后代可以通過交叉和變異操作來創(chuàng)建。第六步:推出原則:選擇當(dāng)前的一代個(gè)體來繁殖下一代個(gè)體,然后求出適應(yīng)度值并判斷算法是否符合退出條件。如果符合條件,這個(gè)值就是最佳的,否則回到第四步,直到種群內(nèi)所有個(gè)體達(dá)到統(tǒng)一標(biāo)準(zhǔn)或幾代個(gè)體的數(shù)量超過最大值100。第四章.負(fù)荷預(yù)測(cè)案例在本章,我們?cè)囍鴮?duì)GM(1,1)-關(guān)于改進(jìn)的遺傳算法進(jìn)行性能評(píng)估。第一步:m天的日負(fù)荷數(shù)據(jù)序列定義為,我們測(cè)量了每個(gè)小時(shí)的電力負(fù)荷,于是負(fù)荷序列向量就是一個(gè)24維數(shù)據(jù)。1點(diǎn):2點(diǎn):j點(diǎn):24點(diǎn):式中m是所建模型的天數(shù),是日負(fù)荷數(shù)據(jù)序列的第j點(diǎn)。圖1.原始數(shù)據(jù)和預(yù)測(cè)值第二步:我們利用改進(jìn)的遺傳算法為各自的負(fù)荷數(shù)據(jù)序列來選擇值。接著,我們可以算出a和b,然后我們利用GM(1,1)-IGA來預(yù)測(cè)第m+1天中的第j點(diǎn)的負(fù)荷,于是我們可以得到,最后第m+1天地24個(gè)預(yù)測(cè)值構(gòu)成了這個(gè)負(fù)荷數(shù)據(jù)序列。這有一個(gè)GM(1,1)-關(guān)于改進(jìn)的遺傳算法(GM(1,1)-IGA)的例子,兩種預(yù)測(cè)日負(fù)荷數(shù)據(jù)曲線(7月26號(hào))和原始的日負(fù)荷曲線同時(shí)在圖1中畫出。第三步:我們可以利用GM(1,1)-遺傳算法的四個(gè)指標(biāo)來檢驗(yàn)精度,包括相對(duì)誤差,均方差率,小誤差概率和關(guān)聯(lián)度誤差。如果相對(duì)誤差和均方差率較低,或者小誤差概率和關(guān)聯(lián)度誤差較大,GM(1,1)-GA的準(zhǔn)確性檢驗(yàn)是較好的。設(shè)置模擬殘差為,k=1,2,…,n設(shè)置模擬的相對(duì)剩余為k=1,2,…,n設(shè)置平均值為設(shè)置的方差為設(shè)置殘差平均值為設(shè)置殘差方差為因此,GM(1,1)-IGA的校驗(yàn)值如下:1).平均相對(duì)誤差為2).均方差率為3).小誤差概率為4).關(guān)聯(lián)度為其中,根據(jù)上述公式,GM(1,1)-IGA的指標(biāo)的校驗(yàn)值見表1。表1GM-IGA和GM的四個(gè)指標(biāo)GM-GAGM平均相對(duì)誤差0.0000900.0001均方差率0.00390.0073小誤差概率10.92關(guān)聯(lián)度0.980.90通過表1可以看出,GM-GA所以指標(biāo)的精確度都是一級(jí)的,因此這個(gè)GM(1,1)-IGA可以被用來預(yù)測(cè)短期負(fù)荷。第四步:在圖1中,我們可以得到GM(1,1)-IGA的預(yù)測(cè)負(fù)荷數(shù)據(jù)曲線比GM(1,1)的曲線更接近于原始的日負(fù)荷數(shù)據(jù)曲線。進(jìn)一步分析,本文選擇相對(duì)誤差作為標(biāo)準(zhǔn)來評(píng)價(jià)兩種模式。兩種模型的偏差值如下,GM(1,1)的平均誤差為2.285%,然而,GM(1,1)-IGA的平均誤差為0.914%。第五章.結(jié)論本文提出了GM(1,1)-關(guān)于改進(jìn)的遺傳算法(GM(1,1)-IGA)來進(jìn)行短期負(fù)荷預(yù)測(cè)。采用十進(jìn)制編碼代表性方案,改進(jìn)的遺傳算法用于獲得GM(1,1)模型中的最優(yōu)值。本文也提出了單點(diǎn)線性算術(shù)交叉法,它能極大地提高交叉和變異的速度,因此GM(1,1)-IGA可以準(zhǔn)確地預(yù)測(cè)短期日負(fù)荷。GM(1,1)-IGA的特點(diǎn)是簡(jiǎn)單、易于開發(fā),因此,它在電力系統(tǒng)中作為一個(gè)輔助工具來解決預(yù)測(cè)問題是適宜的。圖2.GM(1,1)的偏差值圖3.GM(1,1)-IGA的偏差值致謝這項(xiàng)工作是由國家自然科學(xué)基金部分支持。(70671039)參考文獻(xiàn)[1]P.GuptaandK.Yamada,“AdaptiveShort-TermLoadForecastingofHourlyLoadsUsingWeatherInformation,”IEEETr.OnPowerApparatusandSystems.VolPas-91,pp2085-2094,1972.[2]D.W.Bunn,E.D.Farmer,“ComparativeModelsforElectricalLoadForecasting”.JohnWiley&Son,1985,NewYork.[3]AbdolhosienS.Dehdashti,JamesRTudor,MichaelC.Smith,“ForecastingOfHourlyLoadByPatternRecognition-ADeterministicApproach,”IEEETr.OnPowerApparatusandSystems,Vol.AS-101,No.9Sept1982.[4]S.RahrnanandRBhamagar,“AnexpertSystemBasedAlgorithmforShort-TermLoadForecast,”IEEETr.OnPowerSystems,Vol.AS-101,No.9Sept.1982[5]M.T.Hagan,andS.M.Behr,“TimeSeriesApproachtoShort-TermLoadForecasting,”IEEETrans.onPowerSystem,Vol.2,No.3,pp.785-791,1987.[6]XieNaiming,LiuSifeng.“ResearchonDiscreteGreyModelandItsMechanism”.IEEETr.System,ManandCybernetics,Vol1,2005,pp:606-610[7]J.L.Deng,“Controlproblemsofgreysystems,”SystemsandControlLetters,vol.1,no.5,pp.288-294,1982.[8]J.L.Deng,Introductiontogreysystemtheory,J.GreySyst.1(1)(1989)1–24[9]J.L.Deng,PropertiesofmultivariablegreymodelGM(1N),J.GreySyst.1(1)(1989)125–141.[10]J.L.Deng,Controlproblemsofgreysystems,Syst.ControlLett.1(1)(1989)288–294.[11]Y.P.Huang,C.C.Huang,C.H.Hung,Determinationofthepreferredfuzzyvariablesandapplicationstothepredictioncontrolbythegreymodelling,TheSecondNationalConferenceonFuzzyTheoryandApplication,Taiwan,1994,pp.406–409.[12]S0aeroandMRIrving,“AGeneticAlgorithmForGeneratorSchedulingInPowerSystems,”IEEETr.ElectricalPower&EnergySystems,Vol18.No1,pp19-261996.[13]Edmund,T.H.HengDiptiSrinivasanA.C.Liew.“ShortTermLoadForecastingUsingGeneticAlgorithmAndNeuralNetworks”.IEEECatalogueNo:98EX137pp576-581[14]Chew,J.M.,Lin,Y.H.,andChen,J.Y.,"TheGreyPredictorControlinInvertedPendulumSystem",JournalofChinaInstituteofTechnologyandCommerce,Vol.11,pp.17-26,1995[15]J.GreySyst.,“Introductiontogreysystemtheory,”vol.1,no.1,pp.1–24,1989ApplicationofImprovedGreyPredictionModelforPowerLoadForecasting[Abstract]Althoughthegreyforecastingmodelhasbeensuccessfullyutilizedinmanyfields,literaturesshowitsperformancestillcouldbeimproved.Forthispurpose,thispaperputforwardaGM(1,1)-connectionimprovedgeneticalgorithm(GM(1,1)-IGA)forshort-termloadforecasting(STLF).WhileTraditionalGM(1,1)forecastingmodelisnotaccurateandthevalueofparameterisconstant,inordertosolvethisproblemandenhancetheaccuracyofshort-termloadforecasting(STLF),theimproveddecimal-codegeneticalgorithm(GA)isappliedtosearchtheoptimalvalueofgreymodelGM(1,1).What’smore,thispaperalsoproposestheone-pointlinearityarithmeticalcrossover,whichcangreatlyimprovethespeedofcrossoverandmutation.Finally,adailyloadforecastingexampleisusedtotesttheGM(1,1)-IGAmodelandtraditionalGM(1,1)model,resultsshowthattheGM(1,1)-IGAhadbetteraccuracyandpracticality.Keywords:Short-termLoadForecasting,GreySystem,GeneticAlgorithm,One-pointLinearityArithmeticalCrossover.IntroductionDailypeakloadforecastingplaysanimportantroleinallaspectsofeconomic,reliable,andsecurestrategiesforpowersystem.Specifically,theshort-termloadforecasting(STLF)ofdailyelectricityusageiscrucialinunitcommitment,maintenance,powerinterchangeandtaskschedulingofbothpowergenerationanddistributionfacilities.Short-termloadforecasting(STLF)aimsatpredictingelectricloadsforaperiodofminutes,hours,daysorweeks.Thequalityoftheshort-termloadforecastswithleadtimesrangingfromonehourtoseveraldaysaheadhasasignificantimpactontheefficiencyofoperationofanypowerutility,becausemanyoperationaldecisions,suchaseconomicdispatchschedulingofthegeneratingcapacity,unitcommitment,schedulingoffuelpurchaseaswellassystemsecurityassessmentarebasedonsuchforecasts[1].Traditionalshort-termloadforecastingmodelscanbeclassifiedastimeseriesmodelsorregressionmodels[2,3,4].Usually,thesetechniquesareeffectivefortheforecastingofshort-termloadonnormaldaysbutfailtoyieldgoodresultsonthosedayswithspecialevents[5,6,7].Furthermore,becauseoftheircomplexities,enormouscomputationaleffortsarerequiredtoproduceacceptableresults.Thegreysystemtheory,originallypresentedbyDeng[8,9,10],focusesonmodeluncertaintyandinformationinsufficiencyinanalyzingandunderstandingsystemsviaresearchonconditionalanalysis,forecastinganddecisionmaking.Thegreysystemputseachstochasticvariableasagreyquantitythatchangeswithinagivenrange.Itdoesnotrelyonstatisticalmethodtodealwiththegreyquantity.Itdealsdirectlywiththeoriginaldata,andsearchestheintrinsicregularityofdata[11].Thegreyforecastingmodelutilisestheessentialpartofthegreysystemtheory.Therewith,greyforecastingcanbesaidtodefinetheestimationdonebytheuseofagreysystem,whichisinbetweenawhitesystemandablack-boxsystem.Asystemisdefinedasawhiteoneiftheinformationinitisknown;otherwise,asystemwillbeablackboxifnothinginitisclear.ThegreymodelGM(1,1)isthemainmodelofgreytheoryofprediction,i.e.asinglevariablefirstordergreymodel,whichiscreatedwithfewdata(fourormore)andstillwecangetfineforecastingresult[12].Thegreyforecastingmodelsaregivenbygreydifferentialequations,whicharegroupsofabnormaldifferentialequationswithvariationsinbehaviorparameters,orgreydifferenceequationswhicharegroupsofabnormaldifferenceequationswithvariationsinstructure,ratherthanthefirst-orderdifferentialequationsorthedifferenceequationsinconventionalcases[13].ThegreymodelGM(1,l)hasparameterwhichwasoftensetto0.5inmanyarticles,andthisconstantmightnotbeoptimal,becausedifferentquestionsmightneeddifferentvalue,whichproduceswrongresults.Inordertocorrecttheabove-mentioneddefect,thispaperattemptstoestimatebygeneticalgorithms.Geneticalgorithms(GA)werefirstlydescribedbyJohnHolland,whopresentedthemasanabstractionofbiologicalevolutionandgaveatheoreticalmathematicalframeworkforadaptation[14].ThedistinguishingfeatureofaGAwithrespecttootherfunctionoptimizationtechniquesisthatthesearchtowardsanoptimumsolutionproceedsnotbyincrementalchangestoasinglestructurebutbymaintainingapopulationofsolutionsfromwhichnewstructuresarecreatedusinggeneticoperators[15].Usually,thebinaryrepresentationwasappliedtomanyoptimizationproblems,butinthispapergeneticalgorithms(GA)adoptedimproveddecimal-coderepresentationscheme.ThispaperproposedGM(1,1)-improvedgeneticalgorithm(GM(1,1)-IGA)tosolveshort-termloadforecasting(STLF)problemsinpowersystem.ThetraditionalGM(1,1)forecastingmodeloftensetsthecoefficientto0.5,whichisthereasonwhythebackgroundvaluez(1)(k)maybeunsuitable.Inordertoovercometheabove-mentioneddrawbacks,theimproveddecimal-codegeneticalgorithmwasusedtoobtaintheoptimalcoefficientvaluetosetproperbackgroundvaluez(1)(k).Whatismore,theone-pointlinearityarithmeticalcrossoverwasputforward,whichcangreatlyimprovethespeedofcrossoverandmutationsothattheproposedGM(1,1)-IGAcanforecasttheshort-termdailyloadsuccessfully.Thepaperisorganizedasfollows:section2proposesthegreyforecastingmodelGM(1,1):section3presentsEstimatewithimprovedgeneticalgorithm:section4putsforwardashort-termdailyloadforecastingrealizedbyGM(1,1)-IGAandfinally,aconclusionisdrawninsection5.2.GreypredictionmodelGM(1,1)Thissectionreviewstheoperationofgreyforecastingindetails.ThegreymodelGM(1,1)isatimeseriesforecastingmodel.Ithasthreebasicoperations:(1)accumulatedgeneration,(2)inverseaccumulatedgeneration,and(3)greymodeling.Thegreyforecastingmodelusestheoperationsofaccumulatedtoconstructdifferentialequations.Intrinsicallyspeaking,ithasthecharacteristicsofrequiringlessdata.ThegreymodelGM(1,1),i.e.,asinglevariablefirst-ordergreymodel,issummarizedasfollows:Step1:Denotetheinitialtimesequenceby=x(0)isthegivendiscreten-th-dimensionalsequence.x(0)(m)isthetimeseriesdataattimem,nmustbeequaltoorlargerthan4.Onthebasisoftheinitialsequencex(0),anewsequencex(1)issetupthroughtheaccumulatedgeneratingoperationinordertoprovidethemiddlemessageofbuildingamodelandtoweakenthevariationtendency,sox(1)isdefinedas:Where,andandisthertimesaccumulatedseries.Step2:Tosetthevaluetofinez(1)(k)AccordingtoGM(1,1),wecanformthefollowingfirst-ordergreydifferentialequation:Anditsdifferenceequationis.WhereawascalledthedevelopingcoefficientofGM,andbwascalledthecontrolvariable.Denotingthedifferentialcoefficientsubentryintheformofdifference,wecanget:BeforeagreyGM(1,1)modelwassetup,apropervalueneededtobeassignedforabetterbackgroundvaluez(1)(k).Thesequenceofbackgroundvalueswasdefinedas:AmongthemForconvenience,thevaluewasoftensetto0.5,thez(1)(k)wasderivedas:However,thisconstantmightnotbeoptimalbecausethedifferentquestionsmightneeddifferentvalue.And,bothdevelopingcoefficientaandcontrolvariablebweredeterminedbythez(1)(k).Theprocessoftheoriginalgreyinformationforwhiteningmaybesuppressedresultedfromthecoefficientwasconstant.Hence,theaccuracyofpredictionvaluex?(0)(k)inGM(1,1)modelwouldseriouslybedecreased.Inordertocorrectthedefect,thecoefficientmustbeavariablebasedonthefeatureofproblems,soweestimatebygeneticalgorithms.Step3:ToconstructaccumulatedmatrixBandcoefficientvectorXn.ApplyingtheOrdinaryLeastSquare(OLS)methodobtainsthedevelopingcoefficienta,bwasasfollows:andSoStep4:Toobtainthediscreteformoffirst-ordergreydifferentialequation,asfollows:Thesolutionofx(1)isAndthesolutionofx(0)is3.EstimatewithimprovedGAInordertoestimatetheaccuracyofgreymodeGM(1,1),theresidualerrortestwasessential.Therefore,theobjectivefunctionoftheproposedmethodinthispaperwastoensurethattheforecastingvalueerrorswereminimum.Theobjectivefunctionwasdefinedasmeanabsolutepercentageerror(MAPE)minimizationasfollows:Where,x(0)(k)isoriginaldata,isforecastingvalue,nisthenumberofsequencedata.However,fromtheabovedescriptionoftheestablishmentofGM(1,1),wecanget:InGM(1,1),thevalueofparametercandeterminez(1),and,bothdevelopingcoefficientaandcontrolvariablebweredeterminedbythez(1)(k).Whatismore,thesolutionofx(0)wasdeterminedbyaandb,sothekeypartofthewholemodelselectingprocesswasthevalueof.Thereiskindofcomplicatednonlinearrelationshipbetweenandresidualerrors,andthisnonlinearitywashardtosolvebyresolution,sotheoptimalselectionofwasthedifficultpointofGM(1,1).Geneticalgorithmisarandomsearchalgorithmthatsimulatesnaturalselectionandevolution.Itisfindingwidespreadapplicationasaconsequenceoftwofundamentalaspects:thecomputationalcodeisverysimpleandyetprovidesapowerfulsearchmechanism.Theyarefunctionindependentwhichmeanstheyarenotlimitedbythepropertiesofthefunctionsuchascontinuity,existenceofderivatives,etc.Althoughthebinaryrepresentationwasusuallyappliedtomanyoptimizationproblems,inthispaper,weusedtheimproveddecimal-coderepresentationschemeforsolution.Theimproveddecimal-coderepresentationintheGAoffersanumberofadvantagesinnumericalfunctionoptimizationoverbinaryencoding.Theadvantagescanbebrieflydescribedasfollows:Step1:EfficiencyofGAisincreasedasthereisnoneedtoconvertchromosomestothebinarytype,Step2:Lessmemoryisrequiredasefficientfloating-pointinternalcomputerrepresentationscanbeuseddirectly,Step3:Thereisnolossinprecisionbydiscriminationtobinaryorothervalues,andthereisgreaterfreedomtousedifferentgeneticoperators.Weutilizedtheimproveddecimal-coderepresentationschemeforsearchingoptimalcoefficientvalueingreyGM(1,1)model.Inthispaper,weproposedone-pointlinearityarithmeticalcrossoverandutilizedittoselectthevalueof;itcangreatlyimprovethespeedofcrossoverandmutation.Thestepsoftheimproveddecimal-coderepresentationschemeareasfollows:(1)Coding:SupposeisabinarystringofCbits,thenleteverynbitstransformadecimalfromrighttoleft.(n<C,thevaluesofnandCareensuredbyprecision)(2)Randomizepopulation:SelectoneintegerMasthesizeofthepopulation,andthenselectMpointsstochasticallyfromtheset,as,thesepointscomposetheindividualsoftheoriginalpopulation,thesequenceisdefinedas:(3)Evaluatethefitness:Intheselectionstep,individualsarechosentoparticipateinthereproductionofnewindividuals.TheindividualwiththehighestfitnessF()hasthepriorityandadvancestothenextgeneration.Thefitnessfunctionisandisthevalueofforecastingwhichisgainedbytheindividual.isthemaximumofthesumofiterativesquares.Step4:Selection:Inthispaper,wecalculateindividualselectedprobabilityrespectivelyaccordingtotheirfitnessfunctions,thenweadopttheroulettewheelselectionscheme,sothatthepropagatedprobabilityofrespectiveindividualisp(k),afterthatwetaketheinbornindividualtocomposethenextgenerationp(k+1).Step5:CrossoverandMutation:Codingandcrossoverarecorrelative;weutilizedthedecimal-coderepresentation,soweproposeanewcrossoveroperator“one-pointlinearityarithmeticalcrossover”1)Selectthefittwoindividualswithprobabilityofcrossover.2)Forthetwoselectedindividuals,westilladopttherandomselectionmeanstoensurethecrossoveroperator.Forexample:3)crossover:①Weexchangetheirrightstringseachother.②Thebitontheleftofcrossovercanbecalculatedthroughthefollowingalgorithm:a:Geneanalysis:b:Exchangethebackgene:Theiscalledcrossovercoefficient,itischoseneachtimebyrandomcrossoveroperation.4)Mutation:Thereisanewmutationoperation:whenthemutationoperatorwaschosen,thenewgenevalueisthatarandomnumberwithinthedomainofweight,whichisoperatedintoaweightedsumwithoriginalgenevalue.IfthevalueofmutationoperatorisZi,themutationvalueis:Andisthemutationcoefficient,.risarandomnumber,.Itisselectedrandomlyeverytimewhenmutationoperationishappening.Therefore,thenewoffspringcanbecreatedthroughcrossoverandmutationoperations.Step6:Quitprinciple:Selecttheremainingindividualsinthecurrentgenerationtoreproducetheindividualsinthenextgeneration,thenevaluatethefitnessvalueandjudgewhetherthealgorithmfulfilsthequitcondition.Ifitiscertifiable,inthiscasethevalueisoptimalsolution,elserepeatfromStep4untilallindividualsinpopulationmeettheconvergencecriteriaorthenumberofgenerationsexceedsthemaximumof100.4.LoadpredictionexampleInthissection,wetrytoevaluatetheperformanceofGM(1,1)-connectionimprovedgeneticalgorithm.First:Thedailyloaddatasequencesofmdaysaredefinedas,wemeasuredthepowerloadeachhour,andtheloadsequencevectorisatwenty-four-dimensionaldata.01thetimeofday:02thetimeofday:jthetimeofday:24thetimeofday:Wheremisthenumberofmodelingdays,Xjisthedailyloaddatasequenceofthej-thtimeofday.Fig1.OriginaldataandforecastingvalueSecond:WeutilizeimprovedgeneticalgorithmtoselectthevalueofforrespectiveloaddatasequenceXj.Afterthat,wecancalculateaandb,thenweutilizeGM(1,1)-IGAtopredicttheloadforecastingofthej-thtimeofthe(m+1)-thday,sowecouldgetXj(m+1),andthetwenty-fourforecastingvaluesofthe(m+1)-thdaystructuretheloaddatasequence.TherewasanexampleofGM(1,1)-connectionimprovedgeneticalgorithm(GM(1,1)-IGA),boththetwoforecastingdailyloaddatacurves(July26)andtheoriginaldailyloaddatacurveweredrawnsimultaneouslyonFig1.Thirdly:WecanusefourindexesofthisGM(1,1)-GAtoverifytheprecise,includingoftherelativeerror,theratioofmeansquareerror,themicroerrorprobabilityandtherelevancedegree.TheaccuracyverificationofGM(1,1)-GAisbetteriftherelativeerrorandtheratioofmeansquareerrorislower,orthemicroerrorprobabilityandtherelevancedegreeislarger[16].Setthesimulatedresidualofx(0)(k)isk=1,2,…,nSetthesimulatedrelativeresidualisk=1,2,…,nSetthemeanofx(0)isSetthevarianceofx(0)is1SetthemeansofresidualerrorisSetthevarianceofresidualerrorisSothecheckvalueofthisGM(1,1)-GAisasfollowed:1).themeanrelativeerroris2).theratioofmeansquareerroris3.)themicroerrorprobabilityis4).therelevancedegreeisThereamong,Onthebasisofaboveformula,theindexesofverificationofGM(1,1)-GAandGMisinTable1.Accordingtotable1,theallprecisionindexesofGM-GAarefirstdegree,sothisGM(1,1)-GAcanbeusedtopredicttheshort-termload.Fourth:AtFig1,wecangetthattheforecastingloaddatacurveofGM(1,1)-GAwasmoreclosedtotheoriginaldailyloaddatacurvethanGM(1,1)’s.Forfurtheranalysis,thispaperselectsrelativeerrorsasacriteriontoevaluatethetwomodels.Theerrorfiguresoftwomodelsareasfollows,andtheaverageerrorofGM(1,1)was2.285%,otherwise,theaverageerrorofGM(1,1)-IGAwas0.914%.5.ConclusionThispaperproposesGM(1,1)–connectionimprovedgeneticalgorithm(GM(1,1)-IGA)forshort-termloadforecasting.Adoptingdecimal-coderepresentationscheme,theimprovedgeneticalgorithmisusedtoselecttheoptimizevalueofGM(1,1)model.Thepaperalsoputsforwardtheone-pointlinearityarithmeticalcrossoverwhichcangreatlyimprovethespeedofcrossoverandmutation,sothattheGM(1,1)-IGAcanforecasttheshort-termdailyloadsuccessfully.TheGM(1,1)-IGAischaracteristicofbeingsimpleandeasytodevelop,therefore,itisappropriateasanaidtooltosolvetheforecastingproblemsinpowersystem.Fig2.TheerrorsofGM(1,1)Fig3.TheerrorsofGM(1,1)-IGAAcknowledgementThisworkispartiallysupportedbytheNationalNaturalScienceFoundation(70671039)參考文獻(xiàn)[1]P.GuptaandK.Yamada,“AdaptiveShort-TermLoadForecastingofHourlyLoadsUsingWeatherInformation,”IEEETr.OnPowerApparatusandSystems.VolPas-91,pp2085-2094,1972.[2]D.W.Bunn,E.D.Farmer,“ComparativeModelsforElectricalLoadForecasting”.JohnWiley&Son,1985,NewYork.[3]AbdolhosienS.Dehdashti,JamesRTudor,MichaelC.Smith,“ForecastingOfHourlyLoadByPatternRecognition-ADeterministicApproach,”IEEETr.OnPowerApparatusandSystems,Vol.AS-101,No.9Sept1982.[4]S.RahrnanandRBhamagar,“AnexpertSystemBasedAlgorithmforShort-TermLoadForecast,”IEEETr.OnPowerSystems,Vol.AS-101,No.9Sept.1982[5]M.T.Hagan,andS.M.Behr,“TimeSeriesApproachtoShort-TermLoadForecasting,”IEEETrans.onPowerSystem,Vol.2,No.3,pp.785-791,1987.[6]XieNaiming,LiuSifeng.“ResearchonDiscreteGreyModelandItsMechanism”.IEEETr.System,ManandCybernetics,Vol1,2005,pp:606-610[7]J.L.Deng,“Controlproblemsofgreysystems,”SystemsandControlLetters,vol.1,no.5,pp.288-294,1982.[8]J.L.Deng,Introductiontogreysystemtheory,J.GreySyst.1(1)(1989)1–24[9]J.L.Deng,PropertiesofmultivariablegreymodelGM(1N),J.GreySyst.1(1)(1989)125–141.[10]J.L.Deng,Controlproblemsofgreysystems,Syst.ControlLett.1(1)(1989)288–294.[11]Y.P.Huang,C.C.Huang,C.H.Hung,Determinationofthepreferredfuzzyvariablesandapplicationstothepredictioncontrolbythegreymodelling,TheSecondNationalConferenceonFuzzyTheoryandApplication,Taiwan,1994,pp.406–409.[12]S0aeroandMRIrving,“AGeneticAlgorithmForGeneratorSchedulingInPowerSystems,”IEEETr.ElectricalPower&EnergySystems,Vol18.No1,pp19-261996.[13]Edmund,T.H.HengDiptiSrinivasanA.C.Liew.“ShortTermLoadForecastingUsingGeneticAlgorithmAndNeuralNetworks”.IEEECatalogueNo:98EX137pp576-581[14]Chew,J.M.,Lin,Y.H.,andChen,J.Y.,"TheGreyPredictorControlinInvertedPendulumSystem",JournalofChinaInstituteofTechnologyandCommerce,Vol.11,pp.17-26,1995[15]J.GreySyst.,“Introductiontogreysystemtheory,”vol.1,no.1,pp.1–24,1989基于C8051F單片機(jī)直流電動(dòng)機(jī)反饋控制系統(tǒng)的設(shè)計(jì)與研究基于單片機(jī)的嵌入式Web服務(wù)器的研究MOTOROLA單片機(jī)MC68HC(8)05PV8/A內(nèi)嵌EEPROM的工藝和制程方法及對(duì)良率的影響研究基于模糊控制的電阻釬焊單片機(jī)溫度控制系統(tǒng)的研制基于MCS-51系列單片機(jī)的通用控制模塊的研究基于單片機(jī)實(shí)現(xiàn)的供暖系統(tǒng)最佳啟停自校正(STR)調(diào)節(jié)器單片機(jī)控制的二級(jí)倒立擺系統(tǒng)的研究基于增強(qiáng)型51系列單片機(jī)的TCP/IP協(xié)議棧的實(shí)現(xiàn)基于單片機(jī)的蓄電池自動(dòng)監(jiān)測(cè)系統(tǒng)HYPERLINK"/detail.htm
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度高端汽車銷售代理服務(wù)合同3篇
- 二零二五年度沖擊鉆施工安全防護(hù)措施合同4篇
- 綠色辦公環(huán)境的營造與策略研究
- 跨越領(lǐng)域的學(xué)習(xí)學(xué)生自主學(xué)習(xí)的跨學(xué)科應(yīng)用
- 實(shí)驗(yàn)室自動(dòng)化設(shè)備的智能化轉(zhuǎn)型
- 電商助力小區(qū)內(nèi)快消品市場(chǎng)的線上化轉(zhuǎn)型之路
- 二零二五年度車輛租賃合同電子化管理范本7篇
- 2025版專業(yè)烘焙食材配送合同書(含定制化服務(wù))3篇
- 二零二五年度財(cái)務(wù)數(shù)據(jù)保密及風(fēng)險(xiǎn)評(píng)估協(xié)議2篇
- 二零二五年度餐廳品牌跨界合作開發(fā)合同3篇
- 醫(yī)院急診醫(yī)學(xué)小講課課件:急診呼吸衰竭的處理
- 腸梗阻導(dǎo)管在臨床中的使用及護(hù)理課件
- 調(diào)料廠工作管理制度
- 2023年MRI技術(shù)操作規(guī)范
- 小學(xué)英語單詞匯總大全打印
- 衛(wèi)生健康系統(tǒng)安全生產(chǎn)隱患全面排查
- GB/T 15114-2023鋁合金壓鑄件
- 三相分離器原理及操作
- 貨物驗(yàn)收單表格模板
- 600字A4標(biāo)準(zhǔn)作文紙
- GB/T 18015.2-2007數(shù)字通信用對(duì)絞或星絞多芯對(duì)稱電纜第2部分:水平層布線電纜分規(guī)范
評(píng)論
0/150
提交評(píng)論