版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.如圖所示,在正四棱錐中,分別是,,的中點(diǎn),動(dòng)點(diǎn)在線段上運(yùn)動(dòng)時(shí),下列結(jié)論不恒成立的是().A.與異面 B.面 C. D.2.如圖所示的圖形是弧三角形,又叫萊洛三角形,它是分別以等邊三角形ABC的三個(gè)頂點(diǎn)為圓心,以邊長為半徑畫弧得到的封閉圖形.在此圖形內(nèi)隨機(jī)取一點(diǎn),則此點(diǎn)取自等邊三角形內(nèi)的概率是()A.32π-3 B.34π-233.正四棱錐的側(cè)棱長與底面邊長都是1,則側(cè)棱與底面所成的角為()A.75°B.60°C.45°D.30°4.已知的三個(gè)內(nèi)角所對的邊為,面積為,且,則等于()A. B. C. D.5.已知函數(shù),若在區(qū)間內(nèi)沒有零點(diǎn),則的取值范圍是A. B. C. D.6.已知函數(shù),若方程有5個(gè)解,則的取值范圍是()A. B. C. D.7.已知,成等差數(shù)列,成等比數(shù)列,則的最小值是A.0 B.1 C.2 D.48.在平面直角坐標(biāo)系中,,分別是軸和軸上的動(dòng)點(diǎn),若直線恰好與以為直徑的圓相切,則圓面積的最小值為()A. B. C. D.9.設(shè)的內(nèi)角,,的對邊分別為,,.若,,,且,則()A. B. C. D.10.已知數(shù)列滿足,則()A.2 B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.某次體檢,6位同學(xué)的身高(單位:米)分別為1.72,1.78,1.75,1.80,1.69,1.77則這組數(shù)據(jù)的中位數(shù)是_________(米).12.已知扇形的面積為,圓心角為,則該扇形半徑為__________.13.已知,那么__________.14.設(shè)奇函數(shù)的定義域?yàn)镽,且對任意實(shí)數(shù)滿足,若當(dāng)∈[0,1]時(shí),,則____.15.若直線平分圓,則的值為________.16.如圖,網(wǎng)格紙的小正方形的邊長是1,在其上用粗線畫出了某多面體的三視圖,則這個(gè)多面體最長的一條棱的長為______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(Ⅰ)求函數(shù)的最小正周期;(Ⅱ)求方程的解構(gòu)成的集合.18.已知圓,直線.圓與軸交于兩點(diǎn),是圓上不同于的一動(dòng)點(diǎn),所在直線分別與交于.(1)當(dāng)時(shí),求以為直徑的圓的方程;(2)證明:以為直徑的圓截軸所得弦長為定值.19.在等差數(shù)列中,,其前項(xiàng)和為,等比數(shù)列的各項(xiàng)均為正數(shù),,且,.(1)求數(shù)列和的通項(xiàng)公式;(2)令,設(shè)數(shù)列的前項(xiàng)和為,求()的最大值與最小值.20.已知(1)化簡;(2)若,求的值.21.已知數(shù)列的前項(xiàng)和,且滿足:,.(1)求數(shù)列的通項(xiàng)公式;(2)若,求數(shù)列的前項(xiàng)和.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】如圖所示,連接AC、BD相交于點(diǎn)O,連接EM,EN.(1)由正四棱錐S?ABCD,可得SO⊥底面ABCD,AC⊥BD,∴SO⊥AC.∵SO∩BD=O,∴AC⊥平面SBD,∵E,M,N分別是BC,CD,SC的中點(diǎn),∴EM∥BD,MN∥SD,而EM∩MN=N,∴平面EMN∥平面SBD,∴AC⊥平面EMN,∴AC⊥EP.故C正確.(2)由異面直線的定義可知:EP與SD是異面直線,故A正確;(3)由(1)可知:平面EMN∥平面SBD,∴EP∥平面SBD,因此B正確.(4)當(dāng)P與M重合時(shí),有∥,其他情況都是異面直線即D不正確.故選D點(diǎn)睛:本題抓住正四棱錐的特征,頂點(diǎn)在底面的投影為底面正方形的中心,即SO⊥底面ABCD,EP為動(dòng)直線,所以要證EP∥面,可先證EP所在的平面平行于面SBD,要證⊥可先證AC垂直于EP所在的平面,所以化動(dòng)為靜的處理思想在立體中常用.2、D【解析】
求出以A為圓心,以邊長為半徑,圓心角為∠BAC的扇形的面積,根據(jù)圖形的性質(zhì),可知它的3倍減去2倍的等邊三角形ABC【詳解】設(shè)等邊三角形ABC的邊長為a,設(shè)以A為圓心,以邊長為半徑,圓心角為∠BAC的扇形的面積為S1,則S1=萊洛三角形面積為S,則S=3S在此圖形內(nèi)隨機(jī)取一點(diǎn),則此點(diǎn)取自等邊三角形內(nèi)的概率為P,P=S【點(diǎn)睛】本題考查了幾何概型.解決本題的關(guān)鍵是正確求出萊洛三角形的面積.考查了運(yùn)算能力.3、C【解析】如圖:是底面中心,是側(cè)棱與底面所成的角;在直角中,故選C4、C【解析】
利用三角形面積公式可得,結(jié)合正弦定理及三角恒等變換知識可得,從而得到角A.【詳解】∵∴即∴∴∴,∴(舍)∴故選C【點(diǎn)睛】此題考查了正弦定理、三角形面積公式,以及三角恒等變換,熟練掌握邊角的轉(zhuǎn)化是解本題的關(guān)鍵.5、B【解析】
函數(shù),由,可得,,因此即可得出.【詳解】函數(shù)由,可得解得,∵在區(qū)間內(nèi)沒有零點(diǎn),
.故選B.【點(diǎn)睛】本題考查了三角函數(shù)的圖象與性質(zhì)、不等式的解法,考查了推理能力與計(jì)算能力,屬于中檔題.6、D【解析】
利用因式分解法,求出方程的解,結(jié)合函數(shù)的性質(zhì),根據(jù)題意可以求出的取值范圍.【詳解】,,或,由題意可知:,由題可知:當(dāng)時(shí),有2個(gè)解且有2個(gè)解且,當(dāng)時(shí),,因?yàn)?,所以函?shù)是偶函數(shù),當(dāng)時(shí),函數(shù)是減函數(shù),故有,函數(shù)是偶函數(shù),所以圖象關(guān)于縱軸對稱,即當(dāng)時(shí)有,,所以,綜上所述;的取值范圍是,故本題選D.【點(diǎn)睛】本題考查了已知方程解的情況求參數(shù)取值問題,正確分析函數(shù)的性質(zhì),是解題的關(guān)鍵.7、D【解析】解:∵x,a,b,y成等差數(shù)列,x,c,d,y成等比數(shù)列根據(jù)等差數(shù)列和等比數(shù)列的性質(zhì)可知:a+b=x+y,cd=xy,當(dāng)且僅當(dāng)x=y時(shí)取“=”,8、A【解析】
根據(jù)題意畫出圖像,數(shù)形結(jié)合,根據(jù)圓面積最小的條件轉(zhuǎn)化為直徑等于原點(diǎn)到直線的距離,再求解圓面積即可.【詳解】根據(jù)題意畫出圖像如圖所示,圓心為線段中點(diǎn),為直角三角形,所以,作直線且交于點(diǎn),直線與圓相切,所以,要使圓面積的最小,即使半徑最小,由圖知,當(dāng)點(diǎn)、、共線時(shí),圓的半徑最小,此時(shí)原點(diǎn)到直線的距離為,由點(diǎn)到直線的距離公式:,解得,所以圓面積的最小值.故選:A【點(diǎn)睛】本題主要考查點(diǎn)到直線距離公式和圓切線的應(yīng)用,考查學(xué)生分析轉(zhuǎn)化能力和數(shù)形結(jié)合的思想,屬于中檔題.9、B【解析】由余弦定理得:,所以,即,解得:或,因?yàn)?,所以,故選B.考點(diǎn):余弦定理.10、B【解析】
利用數(shù)列的遞推關(guān)系式,逐步求解數(shù)列的即可.【詳解】解:數(shù)列滿足,,所以,.故選:B.【點(diǎn)睛】本題主要考查數(shù)列的遞推關(guān)系式的應(yīng)用,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、1.76【解析】
將這6位同學(xué)的身高按照從低到高排列為:1.69,1.72,1.75,1.77,1.78,1.80,這六個(gè)數(shù)的中位數(shù)是1.75與1.77的平均數(shù),顯然為1.76.【考點(diǎn)】中位數(shù)的概念【點(diǎn)睛】本題主要考查中位數(shù)的概念,是一道基礎(chǔ)題目.從歷年高考題目看,涉及統(tǒng)計(jì)的題目,往往不難,主要考查考生的視圖、用圖能力,以及應(yīng)用數(shù)學(xué)解決實(shí)際問題的能力.12、2【解析】
將圓心角化為弧度制,再利用扇形面積得到答案.【詳解】圓心角為扇形的面積為故答案為2【點(diǎn)睛】本題考查了扇形的面積公式,屬于簡單題.13、2017【解析】,故,由此得.【點(diǎn)睛】本題主要考查函數(shù)解析式的求解方法,考查等比數(shù)列前項(xiàng)和的計(jì)算公式.對于函數(shù)解析式的求法,有兩種,一種是換元法,另一種的變換法.解析中運(yùn)用的方法就是變換法,即將變換為含有的式子.也可以令.等比數(shù)列求和公式為.14、【解析】
根據(jù)得到周期,再利用周期以及奇函數(shù)將自變量轉(zhuǎn)變到給定區(qū)間計(jì)算函數(shù)值.【詳解】因?yàn)?,所以,所以,又因?yàn)?,所以,則,故,又因?yàn)槭瞧婧瘮?shù),所以,則.【點(diǎn)睛】(1)形如的函數(shù)是周期函數(shù),周期;(2)若要根據(jù)奇偶性求解分段函數(shù)的表達(dá)式,記住一個(gè)原則:“用未知表示已知”,也就是將自變量變形,利用已知范圍和解析式求解.15、1【解析】
把圓的一般式方程化為標(biāo)準(zhǔn)方程得到圓心,根據(jù)直線過圓心,把圓心的坐標(biāo)代入到直線的方程,得到關(guān)于的方程,解方程即可【詳解】圓的標(biāo)準(zhǔn)方程為,則圓心為直線過圓心解得故答案為【點(diǎn)睛】本題考查的是直線與圓的位置關(guān)系,解題的關(guān)鍵是求出圓心的坐標(biāo),屬于基礎(chǔ)題16、【解析】
試題分析:由三視圖知,幾何體是一個(gè)四棱錐,四棱錐的底面是一個(gè)正方形,邊長是2,四棱錐的一條側(cè)棱和底面垂直,且這條側(cè)棱長是2,這樣在所有的棱中,連接與底面垂直的側(cè)棱的頂點(diǎn)與相對的底面的頂點(diǎn)的側(cè)棱是最長的長度是,考點(diǎn):三視圖點(diǎn)評:本題考查由三視圖還原幾何體,所給的是一個(gè)典型的四棱錐,注意觀察三視圖,看出四棱錐的一條側(cè)棱與底面垂直.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)利用二倍角公式化簡函數(shù),再逆用兩角和的正弦公式進(jìn)一步化簡函數(shù),代入最小正周期公式即可得解;(Ⅱ)由得,則,求解x并寫成集合形式.【詳解】(Ⅰ),所以函數(shù)的最小正周期.(Ⅱ)由得,,解得因此方程的解構(gòu)成的集合是:.【點(diǎn)睛】本題考查簡單的三角恒等變換,已知三角函數(shù)值求角的集合,屬于基礎(chǔ)題.18、(1);(2)證明見解析.【解析】
(1)討論點(diǎn)的位置,根據(jù)直線的方程,直線的方程分別與直線方程聯(lián)立,得出的坐標(biāo),進(jìn)而得出圓心坐標(biāo)以及半徑,即可得出該圓的方程;(2)討論點(diǎn)的位置,根據(jù)直角三角形的邊角關(guān)系得出的坐標(biāo),進(jìn)而得出圓心坐標(biāo)以及半徑,再由圓的弦長公式化簡即可證明.【詳解】(1)由圓的方程可知,①當(dāng)點(diǎn)在第一象限時(shí),如下圖所示當(dāng)時(shí),,所以直線的方程為由,解得直線的方程為由,解得則的中點(diǎn)坐標(biāo)為,所以以為直徑的圓的方程為②當(dāng)點(diǎn)在第四象限時(shí),如下圖所示當(dāng)時(shí),,所以直線的方程為由,解得直線的方程為由,解得則的中點(diǎn)坐標(biāo)為,所以以為直徑的圓的方程為綜上,以為直徑的圓的方程為(2)①當(dāng)點(diǎn)在圓上半圓運(yùn)動(dòng)時(shí),取直線交軸于點(diǎn),如下圖所示設(shè),則則以為直徑的圓的圓心坐標(biāo)為,半徑所以以為直徑的圓截軸所得弦長為②當(dāng)點(diǎn)在圓下半圓運(yùn)動(dòng)時(shí),取直線交軸于點(diǎn),如下圖所示設(shè),則則以為直徑的圓的圓心坐標(biāo)為,半徑所以以為直徑的圓截軸所得弦長為綜上,以為直徑的圓截軸所得弦長為定值.【點(diǎn)睛】本題主要考查了求圓的方程以及圓的弦長公式的應(yīng)用,屬于中檔題.19、(1),;(2)的最大值是,最小值是.【解析】試題分析:(1)由條件列關(guān)于公差與公比的方程組,解得,,再根據(jù)等差與等比數(shù)列通項(xiàng)公式求通項(xiàng)公式(2)化簡可得,再根據(jù)等比數(shù)列求和公式得,結(jié)合函數(shù)單調(diào)性,可確定其最值試題解析:(1)設(shè)等差數(shù)列的公差為,等比數(shù)列的公比為,則解得,,所以,.(2)由(1)得,故,當(dāng)為奇數(shù)時(shí),,隨的增大而減小,所以;當(dāng)為偶數(shù)時(shí),,隨的增大而增大,所以,令,,則,故在時(shí)是增函數(shù).故當(dāng)為奇數(shù)時(shí),;當(dāng)為偶數(shù)時(shí),,綜上所述,的最大值是,最小值是.20、(1);(2)【解析】
(1)直接利用誘導(dǎo)公式化簡求解即可;(2)由(1)可求出,然后利用同角三角函數(shù)的基本關(guān)系式將化
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版企業(yè)總經(jīng)理聘用協(xié)議
- 2025年進(jìn)口熱帶水果專供協(xié)議書3篇
- 2025年度纖維原料加工合作合同模板3篇
- 2025年度船舶抵押貸款服務(wù)協(xié)議范本3篇
- 2025版二零二五年度消防設(shè)備租賃合同3篇
- 現(xiàn)代科技下的中醫(yī)家庭健康服務(wù)
- 教育與科技創(chuàng)新的未來路徑
- 電力行業(yè)從業(yè)人員安全用電培訓(xùn)教程
- 二零二五年度創(chuàng)新型民間車輛抵押貸款合同范本4篇
- 基于2025年度計(jì)劃的研發(fā)合作與專利權(quán)共享協(xié)議3篇
- 【高空拋物侵權(quán)責(zé)任規(guī)定存在的問題及優(yōu)化建議7100字(論文)】
- 二年級數(shù)學(xué)上冊100道口算題大全 (每日一套共26套)
- 物流無人機(jī)垂直起降場選址與建設(shè)規(guī)范
- 肺炎臨床路徑
- 外科手術(shù)鋪巾順序
- 創(chuàng)新者的窘境讀書課件
- 如何克服高中生的社交恐懼癥
- 聚焦任務(wù)的學(xué)習(xí)設(shè)計(jì)作業(yè)改革新視角
- 移動(dòng)商務(wù)內(nèi)容運(yùn)營(吳洪貴)任務(wù)三 APP的品牌建立與價(jià)值提供
- 電子競技范文10篇
- 食堂服務(wù)質(zhì)量控制方案與保障措施
評論
0/150
提交評論