版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
高考資源網(wǎng)(),您身邊的高考專家歡迎廣大教師踴躍來稿,稿酬豐厚。高考資源網(wǎng)(),您身邊的高考專家歡迎廣大教師踴躍來稿,稿酬豐厚。專題2.9已知不等恒成立討論單調(diào)或最值【題型綜述】不等式恒成立的轉(zhuǎn)化策略一般有以下幾種:①分離參數(shù)+函數(shù)最值;②直接化為最值+分類討論;③縮小范圍+證明不等式;④分離函數(shù)+數(shù)形結(jié)合。通過討論函數(shù)的單調(diào)性及最值,直接化為最值的優(yōu)點(diǎn)是函數(shù)結(jié)構(gòu)簡單,是不等式恒成立的通性通法,高考參考答案一般都是以這種解法給出,缺點(diǎn)是一般需要分類討論,解題過程較長,解題層級(jí)數(shù)較多,不易掌握分類標(biāo)準(zhǔn)。【典例指引】例1.設(shè)SKIPIF1<0是SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線.(Ⅰ)求SKIPIF1<0的解析式;(Ⅱ)求證:SKIPIF1<0;(Ⅲ)設(shè)SKIPIF1<0,其中SKIPIF1<0.若SKIPIF1<0對(duì)SKIPIF1<0恒成立,求SKIPIF1<0的取值范圍.【思路引導(dǎo)】(Ⅰ)由導(dǎo)數(shù)值得切線斜率,進(jìn)而得切線方程,即可求函數(shù)f(x)的解析式;(Ⅱ)令SKIPIF1<0,求導(dǎo)證得SKIPIF1<0;(Ⅲ)SKIPIF1<0,①當(dāng)SKIPIF1<0時(shí),由(Ⅰ)得SKIPIF1<0,可得SKIPIF1<0,進(jìn)而得SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,SKIPIF1<0恒成立,②當(dāng)SKIPIF1<0時(shí),可得SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,存在SKIPIF1<0,使得SKIPIF1<0,SKIPIF1<0,此時(shí)SKIPIF1<0不會(huì)恒成立,進(jìn)而得的取值范圍.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故SKIPIF1<0單調(diào)遞增.所以,SKIPIF1<0SKIPIF1<0).所以SKIPIF1<0.點(diǎn)睛:導(dǎo)數(shù)問題經(jīng)常會(huì)遇見恒成立的問題:(1)根據(jù)參變分離,轉(zhuǎn)化為不含參數(shù)的函數(shù)的最值問題;(2)若SKIPIF1<0就可討論參數(shù)不同取值下的函數(shù)的單調(diào)性和極值以及最值,最終轉(zhuǎn)化為SKIPIF1<0,若SKIPIF1<0恒成立SKIPIF1<0;(3)若SKIPIF1<0恒成立,可轉(zhuǎn)化為SKIPIF1<0(需在同一處取得最值).例2.函數(shù).(Ⅰ)討論的單調(diào)性;(Ⅱ)若且滿足:對(duì),,都有,試比較與的大小,并證明.【思路引導(dǎo)】(1)求出SKIPIF1<0,討論兩種情況分別令SKIPIF1<0可得增區(qū)間,SKIPIF1<0可得得減區(qū)間;(2)由(Ⅰ)知在上單調(diào)遞減,在上單調(diào)遞增,所以對(duì),,都有等價(jià)于,可得,令,研究其單調(diào)性,可得,進(jìn)而可得結(jié)果.(Ⅱ)當(dāng)時(shí),由得.由(Ⅰ)知在上單調(diào)遞減,在上單調(diào)遞增,所以對(duì),,都有等價(jià)于即解得;令,,當(dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增;又,所以.即,所以.例3.已知函數(shù)SKIPIF1<0(SKIPIF1<0,SKIPIF1<0為自然對(duì)數(shù)的底數(shù))在點(diǎn)SKIPIF1<0處的切線經(jīng)過點(diǎn)SKIPIF1<0.(Ⅰ)討論函數(shù)SKIPIF1<0的單調(diào)性;(Ⅱ)若SKIPIF1<0,不等式SKIPIF1<0恒成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.【思路引導(dǎo)】(Ⅰ)求出SKIPIF1<0,由過點(diǎn)SKIPIF1<0的直線的斜率為SKIPIF1<0可得SKIPIF1<0,討論兩種情況,分別由SKIPIF1<0得增區(qū)間,SKIPIF1<0得減區(qū)間;(Ⅱ)原不等式等價(jià)于不等式SKIPIF1<0恒成立,利用導(dǎo)數(shù)研究SKIPIF1<0的單調(diào)性,求其最小值,令其最小值不小于零即可得結(jié)果.(Ⅱ)不等式SKIPIF1<0恒成立,即不等式SKIPIF1<0恒成立,設(shè)SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞增且不存在最小值,不滿足題意;當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0,要使得SKIPIF1<0恒成立,只需SKIPIF1<0恒成立,由于SKIPIF1<0,所以有SKIPIF1<0,解得SKIPIF1<0,即當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立,即SKIPIF1<0恒成立,也即不等式SKIPIF1<0恒成立,所以實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.【同步訓(xùn)練】1.已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0,求SKIPIF1<0的圖象在點(diǎn)SKIPIF1<0處的切線方程;(2)若對(duì)任意SKIPIF1<0都有SKIPIF1<0恒成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.【思路引導(dǎo)】(1)由于是在那點(diǎn),所以求導(dǎo)可得(2)對(duì)f(x)求導(dǎo)SKIPIF1<0,再求導(dǎo)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,所以對(duì)SKIPIF1<0和SKIPIF1<0分類討論。單調(diào)遞增,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,在SKIPIF1<0單調(diào)遞增,SKIPIF1<0恒成立;當(dāng)SKIPIF1<0時(shí),存在當(dāng)SKIPIF1<0,使SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0單調(diào)遞增,則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,不合題意,綜上,則實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.點(diǎn)睛:函數(shù)與導(dǎo)數(shù)中恒成立與存在性問題,一般是轉(zhuǎn)化成最值問題,常用的兩種處理方法:(1)分離參數(shù)(2)帶參求導(dǎo),本題采用帶參求導(dǎo)。2.已知函數(shù)SKIPIF1<0,SKIPIF1<0,若曲線SKIPIF1<0和曲線SKIPIF1<0在SKIPIF1<0處的切線都垂直于直線SKIPIF1<0.(Ⅰ)求SKIPIF1<0,SKIPIF1<0的值.(Ⅱ)若SKIPIF1<0時(shí),SKIPIF1<0,求SKIPIF1<0的取值范圍.【思路引導(dǎo)】(Ⅰ)根據(jù)導(dǎo)數(shù)的幾何意義求解即可。(Ⅱ)由(Ⅰ)設(shè)SKIPIF1<0,則SKIPIF1<0,故只需證SKIPIF1<0即可。由題意得SKIPIF1<0,即SKIPIF1<0,又由SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,分SKIPIF1<0,SKIPIF1<0,SKIPIF1<0三種情況分別討論判斷SKIPIF1<0是否恒成立即可得到結(jié)論。(iii)若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,而SKIPIF1<0,從而當(dāng)SKIPIF1<0時(shí),SKIPIF1<0不可能恒成立,綜上可得SKIPIF1<0的取值范圍是SKIPIF1<0.3.已知函數(shù)SKIPIF1<0.(I)求曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程.(II)求證:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.(III)設(shè)實(shí)數(shù)SKIPIF1<0使得SKIPIF1<0對(duì)SKIPIF1<0恒成立,求SKIPIF1<0的最大值.【思路引導(dǎo)】(I)SKIPIF1<0,得SKIPIF1<0,又SKIPIF1<0,可得在SKIPIF1<0處切線方程為SKIPIF1<0.(II)令SKIPIF1<0,求導(dǎo)得出SKIPIF1<0的增減性,然后由SKIPIF1<0得證.(III)由(II)可知,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0對(duì)SKIPIF1<0恒成立.SKIPIF1<0時(shí),令SKIPIF1<0,求導(dǎo),可得SKIPIF1<0上SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時(shí),F(xiàn)SKIPIF1<0,即當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,對(duì)SKIPIF1<0不恒成立,可得k的最大值為2.(II)證明:令SKIPIF1<0,SKIPIF1<0SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即在SKIPIF1<0時(shí),SKIPIF1<0.(III)由(II)知,在SKIPIF1<0時(shí),SKIPIF1<0對(duì)SKIPIF1<0恒成立,點(diǎn)晴:本題主要考查函數(shù)導(dǎo)數(shù)與不等式,恒成立問題.要證明一個(gè)不等式,我們可以先根據(jù)題意所給條件化簡這個(gè)不等式,如第二問的不等式,可以轉(zhuǎn)化為SKIPIF1<0,第三問的不等式可以轉(zhuǎn)化為SKIPIF1<0,劃歸與轉(zhuǎn)化之后,就可以假設(shè)相對(duì)應(yīng)的函數(shù),然后利用導(dǎo)數(shù)研究這個(gè)函數(shù)的單調(diào)性、極值和最值,圖像與性質(zhì),進(jìn)而求解得結(jié)果.4.已知函數(shù)SKIPIF1<0(其中SKIPIF1<0)在點(diǎn)SKIPIF1<0處的切線斜率為1.(1)用SKIPIF1<0表示SKIPIF1<0;(2)設(shè)SKIPIF1<0,若SKIPIF1<0對(duì)定義域內(nèi)的SKIPIF1<0恒成立,求實(shí)數(shù)SKIPIF1<0的取值范圍;(3)在(2)的前提下,如果SKIPIF1<0,證明:SKIPIF1<0.【思路引導(dǎo)】(1)由題意SKIPIF1<0即得;(2)SKIPIF1<0在定義域SKIPIF1<0上恒成立,即SKIPIF1<0,由SKIPIF1<0恒成立,得SKIPIF1<0,再證當(dāng)SKIPIF1<0時(shí),SKIPIF1<0即可;(3)由(2)知SKIPIF1<0,且SKIPIF1<0在SKIPIF1<0單調(diào)遞減;在SKIPIF1<0單調(diào)遞增,當(dāng)SKIPIF1<0時(shí),不妨設(shè)SKIPIF1<0,要證明SKIPIF1<0,等價(jià)于SKIPIF1<0,需要證明SKIPIF1<0,令SKIPIF1<0,可證得SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0即可證得.解法二:(分離變量)SKIPIF1<0恒成立,分離變量可得SKIPIF1<0對(duì)SKIPIF1<0恒成立,令SKIPIF1<0,則SKIPIF1<0。這里先證明SKIPIF1<0,記SKIPIF1<0,則SKIPIF1<0,易得SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0,所以SKIPIF1<0。因此,SKIPIF1<0,且SKIPIF1<0時(shí)SKIPIF1<0,所以SKIPIF1<0,實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0。(3)由(2)知SKIPIF1<0,且SKIPIF1<0在SKIPIF1<0單調(diào)遞減;在SKIPIF1<0單調(diào)遞增,5.已知函數(shù)SKIPIF1<0(SKIPIF1<0).(1)若SKIPIF1<0在SKIPIF1<0處取到極值,求SKIPIF1<0的值;(2)若SKIPIF1<0在SKIPIF1<0上恒成立,求SKIPIF1<0的取值范圍;(3)求證:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.【思路引導(dǎo)】(1)根據(jù)極值的概念得到SKIPIF1<0,可得到參數(shù)值;(2)轉(zhuǎn)化為函數(shù)最值問題,研究函數(shù)的單調(diào)性,分SKIPIF1<0時(shí),SKIPIF1<0時(shí),SKIPIF1<0,三種情況討論單調(diào)性,使得最小值大于等于0即可。(3)由(1)知令SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,給x賦值:2,3,4,5等,最終證得結(jié)果。試題解析:(1)SKIPIF1<0,∵SKIPIF1<0在SKIPIF1<0處取到極值,∴SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,經(jīng)檢驗(yàn),SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0處取到極小值.(3)證明:由(1)知令SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0(當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取“SKIPIF1<0”),∴當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.即當(dāng)SKIPIF1<02,3,4,…,SKIPIF1<0,有SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.點(diǎn)睛:這個(gè)題目考查了導(dǎo)數(shù)在研究函數(shù)極值和單調(diào)性,最值中的應(yīng)用,最終還用到了賦值的思想,證明不等式。其中有典型的恒成立求參的問題。一般是轉(zhuǎn)化成函數(shù)最值問題,或者先變量分離,將參數(shù)和變量分離到不等號(hào)的兩側(cè),再轉(zhuǎn)化為最值問題。6.已知函數(shù)SKIPIF1<0,SKIPIF1<0,其中SKIPIF1<0.(1)若SKIPIF1<0,求函數(shù)SKIPIF1<0在SKIPIF1<0上的值域;(2)若SKIPIF1<0,SKIPIF1<0恒成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.【思路引導(dǎo)】(1)代入SKIPIF1<0,SKIPIF1<0,從而求導(dǎo)SKIPIF1<0,從而由導(dǎo)數(shù)的正負(fù)確定函數(shù)的單調(diào)性,從而求最值;(2)令SKIPIF1<0,化簡求導(dǎo)得到SKIPIF1<0,再令SKIPIF1<0并求導(dǎo)得SKIPIF1<0,從而解得SKIPIF1<0,使得SKIPIF1<0,使SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,從而可得SKIPIF1<0,且SKIPIF1<0,從而化簡求出實(shí)數(shù)SKIPIF1<0的取值范圍.點(diǎn)睛:導(dǎo)數(shù)問題經(jīng)常會(huì)遇見恒成立的問題:(1)根據(jù)參變分離,轉(zhuǎn)化為不含參數(shù)的函數(shù)的最值問題;(2)若SKIPIF1<0就可討論參數(shù)不同取值下的函數(shù)的單調(diào)性和極值以及最值,最終轉(zhuǎn)化為SKIPIF1<0,若SKIPIF1<0恒成立,轉(zhuǎn)化為SKIPIF1<0;(3)若SKIPIF1<0恒成立,可轉(zhuǎn)化為SKIPIF1<0.7.已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求SKIPIF1<0在區(qū)間SKIPIF1<0上的最值;(2)討論函數(shù)SKIPIF1<0的單調(diào)性;(3)當(dāng)SKIPIF1<0時(shí),有SKIPIF1<0恒成立,求SKIPIF1<0的取值范圍.【思路引導(dǎo)】(1)先求導(dǎo)數(shù),再求導(dǎo)函數(shù)零點(diǎn),列表分析導(dǎo)數(shù)在區(qū)間上符號(hào)變化規(guī)律,確定函數(shù)最值(2)先求導(dǎo)數(shù),根據(jù)導(dǎo)函數(shù)符號(hào)是否變化進(jìn)行分類討論:SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0時(shí),先負(fù)后正,最后根據(jù)導(dǎo)數(shù)符號(hào)對(duì)應(yīng)確定單調(diào)性(3)將不等式恒成立轉(zhuǎn)化為對(duì)應(yīng)函數(shù)最值,由(2)得SKIPIF1<0,即SKIPIF1<0,整理化簡得SKIPIF1<0,解得SKIPIF1<0的取值范圍.(Ⅱ)SKIPIF1<0,SKIPIF1<0.①當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;②當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;③當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0得SKIPIF1<0,∴SKIPIF1<0或SKIPIF1<0(舍去)∴SKIPIF1<0在SKIPIF1<0單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減;綜上,當(dāng)SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;(Ⅲ)由(Ⅱ)知,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0即原不等式等價(jià)于SKIPIF1<0即SKIPIF1<0整理得SKIPIF1<0∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0的取值范圍為SKIPIF1<0.點(diǎn)睛:利用導(dǎo)數(shù)研究不等式恒成立或存在型問題,首先要構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出最值,進(jìn)而得出相應(yīng)的含參不等式,從而求出參數(shù)的取值范圍;也可分離變量,構(gòu)造函數(shù),直接把問題轉(zhuǎn)化為函數(shù)的最值問題.8.已知SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求SKIPIF1<0在SKIPIF1<0處的切線方程;(2)若存在SKIPIF1<0,使得SKIPIF1<0成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.【思路引導(dǎo)】(1)求出f(x)的導(dǎo)數(shù),可得切線的斜率,由斜截式方程即可得到所求切線的方程;(2)由題意可得存在x
0∈[0,+∞),使得SKIPIF1<0,設(shè)SKIPIF1<0,兩次求導(dǎo),判斷單調(diào)性,對(duì)a討論,分SKIPIF1<0和SKIPIF1<0時(shí),通過構(gòu)造函數(shù)和求導(dǎo),得到單調(diào)區(qū)間,可得最值,即可得到所求a的范圍.所以SKIPIF1<0SKIPIF1<0設(shè)SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0所以SKIPIF1<0在SKIPIF1<0單調(diào)遞增,∴SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0所以,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立,不合題意綜上,實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.9.已知函數(shù)SKIPIF1<0(SKIPIF1<0).(1)若SKIPIF1<0,求曲線SKIPIF1<0在SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二手房買賣合同范本參考
- 打管樁分包勞務(wù)合同范本
- 月結(jié)采購合同
- 學(xué)校聘用舞蹈老師培訓(xùn)合同
- 景觀石購銷合同范本
- 實(shí)驗(yàn)室租賃合同
- 二手房購買房屋合同
- 貨物商品購銷的合同范本
- 熱感探測(cè)器與火災(zāi)警示
- 消防力量調(diào)度和協(xié)同作戰(zhàn)
- 9001內(nèi)審員培訓(xùn)課件
- 人教版五年級(jí)上冊(cè)小數(shù)除法豎式計(jì)算練習(xí)練習(xí)300題及答案
- 綜合素質(zhì)提升培訓(xùn)全面提升個(gè)人綜合素質(zhì)
- 如何克服高中生的社交恐懼癥
- 聚焦任務(wù)的學(xué)習(xí)設(shè)計(jì)作業(yè)改革新視角
- 《監(jiān)理安全培訓(xùn)》課件
- 2024高二語文期末試卷(選必上、中)及詳細(xì)答案
- 淋巴瘤患者的護(hù)理
- 水利工程建設(shè)管理概述課件
- 人美版初中美術(shù)知識(shí)點(diǎn)匯總九年級(jí)全冊(cè)
- 2022中和北美腰椎間盤突出癥診療指南的對(duì)比(全文)
評(píng)論
0/150
提交評(píng)論