北京十四中2024年數(shù)學(xué)高一下期末檢測模擬試題含解析_第1頁
北京十四中2024年數(shù)學(xué)高一下期末檢測模擬試題含解析_第2頁
北京十四中2024年數(shù)學(xué)高一下期末檢測模擬試題含解析_第3頁
北京十四中2024年數(shù)學(xué)高一下期末檢測模擬試題含解析_第4頁
北京十四中2024年數(shù)學(xué)高一下期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

北京十四中2024年數(shù)學(xué)高一下期末檢測模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.在中,內(nèi)角的對邊分別為,且,,若,則()A.2 B.3 C.4 D.2.在一個(gè)平面上,機(jī)器人到與點(diǎn)的距離為8的地方繞點(diǎn)順時(shí)針而行,它在行進(jìn)過程中到經(jīng)過點(diǎn)與的直線的最近距離為()A. B. C. D.3.若直線與圓交于兩點(diǎn),關(guān)于直線對稱,則實(shí)數(shù)的值為()A. B. C. D.4.若數(shù)列{an}是等比數(shù)列,且an>0,則數(shù)列也是等比數(shù)列.若數(shù)列是等差數(shù)列,可類比得到關(guān)于等差數(shù)列的一個(gè)性質(zhì)為().A.是等差數(shù)列B.是等差數(shù)列C.是等差數(shù)列D.是等差數(shù)列5.甲、乙兩位同學(xué)在高一年級的5次考試中,數(shù)學(xué)成績統(tǒng)計(jì)如莖葉圖所示,若甲、乙兩人的平均成績分別是,則下列敘述正確的是()A.,乙比甲成績穩(wěn)定B.,甲比乙成績穩(wěn)定C.,乙比甲成績穩(wěn)定D.,甲比乙成績穩(wěn)定6.已知平面向量的夾角為,且,則()A. B. C. D.7.某學(xué)生四次模擬考試時(shí),其英語作文的減分情況如下表:考試次數(shù)x

1

2

3

4

所減分?jǐn)?shù)y

4.5

4

3

2.5

顯然所減分?jǐn)?shù)y與模擬考試次數(shù)x之間有較好的線性相關(guān)關(guān)系,則其線性回歸方程為()A.y=0.7x+5.25 B.y=﹣0.6x+5.25 C.y=﹣0.7x+6.25 D.y=﹣0.7x+5.258.某四棱錐的三視圖如圖所示,則它的最長側(cè)棱的長為()A. B. C. D.49.在中,角A,B,C所對的邊分別為a,b,c,若,則()A. B. C. D.10.執(zhí)行如圖所示的程序框圖,令,若,則實(shí)數(shù)a的取值范圍是A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若函數(shù)是奇函數(shù),其中,則__________.12.在中角所對的邊分別為,若則___________13.將角度化為弧度:________.14.已知等比數(shù)列{an}為遞增數(shù)列,且,則數(shù)列{an}的通項(xiàng)公式an=______________.15.已知三棱錐P-ABC,PA⊥平面ABC,AC⊥BC,PA=2,AC=BC=1,則三棱錐P-ABC外接球的體積為__.16.設(shè)數(shù)列是首項(xiàng)為0的遞增數(shù)列,函數(shù)滿足:對于任意的實(shí)數(shù),總有兩個(gè)不同的根,則的通項(xiàng)公式是________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知圓的方程為,直線l的方程為,點(diǎn)P在直線l上,過點(diǎn)P作圓的切線PA,PB,切點(diǎn)為A,B.(1)若,求點(diǎn)P的坐標(biāo);(2)求證:經(jīng)過A,P,三點(diǎn)的圓必經(jīng)過異于的某個(gè)定點(diǎn),并求該定點(diǎn)的坐標(biāo).18.某校研究性學(xué)習(xí)小組從汽車市場上隨機(jī)抽取輛純電動汽車調(diào)查其續(xù)駛里程(單次充電后能行駛的最大里程),被調(diào)查汽車的續(xù)駛里程全部介于公里和公里之間,將統(tǒng)計(jì)結(jié)果分成組:,,,,,繪制成如圖所示的頻率分布直方圖.(1)求直方圖中的值;(2)求輛純電動汽車?yán)m(xù)駛里程的中位數(shù);(3)若從續(xù)駛里程在的車輛中隨機(jī)抽取輛車,求其中恰有一輛車的續(xù)駛里程為的概率.19.如圖,四棱錐中,底面是直角梯形,,,,側(cè)面是等腰直角三角形,,平面平面,點(diǎn)分別是棱上的點(diǎn),平面平面(Ⅰ)確定點(diǎn)的位置,并說明理由;(Ⅱ)求三棱錐的體積.20.已知數(shù)列的前項(xiàng)和,函數(shù)對任意的都有,數(shù)列滿足.(1)求數(shù)列,的通項(xiàng)公式;(2)若數(shù)列滿足,是數(shù)列的前項(xiàng)和,是否存在正實(shí)數(shù),使不等式對于一切的恒成立?若存在請求出的取值范圍;若不存在請說明理由.21.已知A、B兩地的距離是100km,按交通法規(guī)定,A、B兩地之間的公路車速x應(yīng)限制在60~120km/h,假設(shè)汽油的價(jià)格是7元/L,汽車的耗油率為,司機(jī)每小時(shí)的工資是70元(設(shè)汽車為勻速行駛),那么最經(jīng)濟(jì)的車速是多少?如果不考慮其他費(fèi)用,這次行車的總費(fèi)用是多少?

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】

利用正弦定理化簡,由此求得的值.利用三角形內(nèi)角和定理和兩角和與差的正弦公式化簡,由此求得的值,進(jìn)而求得的值.【詳解】利用正弦定理化簡得,所以為銳角,且.由于,所以由得,化簡得.若,則,故.若,則,由余弦定理得,解得.綜上所述,,故選B.【點(diǎn)睛】本小題主要考查正弦定理、余弦定理解三角形,考查同角三角函數(shù)的基本關(guān)系式,考查三角形內(nèi)角和定理,考查兩角和與差的正弦公式,屬于中檔題.2、A【解析】

由題意知機(jī)器人的運(yùn)行軌跡為圓,利用圓心到直線的距離求出最近距離.【詳解】解:機(jī)器人到與點(diǎn)距離為8的地方繞點(diǎn)順時(shí)針而行,在行進(jìn)過程中保持與點(diǎn)的距離不變,機(jī)器人的運(yùn)行軌跡方程為,如圖所示;與,直線的方程為,即為,則圓心到直線的距離為,最近距離為.故選.【點(diǎn)睛】本題考查了直線和圓的位置關(guān)系,以及點(diǎn)到直線的距離公式,屬于基礎(chǔ)題.3、A【解析】

由題意,得直線是線段的中垂線,則其必過圓的圓心,將圓心代入直線,即可得本題答案.【詳解】解:由題意,得直線是線段的中垂線,所以直線過圓的圓心,圓的圓心為,,解得.故選:A.【點(diǎn)睛】本題給出直線與圓相交,且兩個(gè)交點(diǎn)關(guān)于已知直線對稱,求參數(shù)的值.著重考查了直線與圓的位置關(guān)系等知識,屬于基礎(chǔ)題.4、B【解析】試題分析:本題是由等比數(shù)列與等差數(shù)列的相似性質(zhì),推出有關(guān)結(jié)論:由“等比”類比到“等差”,由“幾何平均數(shù)”類比到“算數(shù)平均數(shù)”;所以,所得結(jié)論為是等差數(shù)列.考點(diǎn):類比推理.5、C【解析】甲的平均成績,甲的成績的方差;乙的平均成績,乙的成績的方差.∴,乙比甲成績穩(wěn)定.故選C.6、B【解析】

將模平方后利用數(shù)量積的定義計(jì)算其結(jié)果,然后開根號得出的值.【詳解】,因此,,故選B.【點(diǎn)睛】本題考查利用平面向量的數(shù)量積來求平面向量的模,通常利用平方法結(jié)合平面向量數(shù)量積的定義來進(jìn)行求解,考查計(jì)算能力,屬于中等題.7、D【解析】試題分析:先求樣本中心點(diǎn),利用線性回歸方程一定過樣本中心點(diǎn),代入驗(yàn)證,可得結(jié)論.解:先求樣本中心點(diǎn),,由于線性回歸方程一定過樣本中心點(diǎn),代入驗(yàn)證可知y=﹣0.7x+5.25,滿足題意故選D.點(diǎn)評:本題考查線性回歸方程,解題的關(guān)鍵是利用線性回歸方程一定過樣本中心點(diǎn),屬于基礎(chǔ)題.8、C【解析】

由三視圖可知:底面,,底面是一個(gè)直角梯形,,,均為直角三角形,判斷最長的棱,通過幾何體求解即可.【詳解】由三視圖可知:該幾何體如圖所示,則底面,,底面是一個(gè)直角梯形,其中,,,,可得,,均為直角三角形,最長的棱是,.故選:C.【點(diǎn)睛】本題考查了三視圖,線面垂直的判定與性質(zhì)定理,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.9、B【解析】

利用正弦定理邊化角,結(jié)合和差公式以及誘導(dǎo)公式,即可得到本題答案.【詳解】因?yàn)?,所以,,,,?故選:B.【點(diǎn)睛】本題主要考查利用正弦定理邊角轉(zhuǎn)化求角,考查計(jì)算能力,屬于基礎(chǔ)題.10、D【解析】該程序的功能是計(jì)算并輸出分段函數(shù).當(dāng)時(shí),,解得;當(dāng)時(shí),,解得;當(dāng)時(shí),,無解.綜上,,則實(shí)數(shù)a的取值范圍是.故選D.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

定義域上的奇函數(shù),則【詳解】函數(shù)是奇函數(shù),所以,又,則所以填【點(diǎn)睛】定義域上的奇函數(shù),我們可以直接搭建方程,若定義域中則不能直接代指.12、【解析】,;由正弦定理,得,解得.考點(diǎn):正弦定理.13、【解析】

根據(jù)角度和弧度的互化公式求解即可.【詳解】.故答案為:.【點(diǎn)睛】本題考查角度和弧度的互化公式,屬于基礎(chǔ)題.14、【解析】設(shè)數(shù)列的首項(xiàng)為,公比為q,則,所以,由得解得,因?yàn)閿?shù)列為遞增數(shù)列,所以,,所以考點(diǎn)定位:本題考查等比數(shù)列,意在考查考生對等比數(shù)列的通項(xiàng)公式的應(yīng)用能力15、6【解析】

如圖所示,取PB的中點(diǎn)O,∵PA⊥平面ABC,∴PA⊥AB,PA⊥BC,又BC⊥AC,PA∩AC=A,∴BC⊥平面PAC,∴BC⊥PC.∴OA=12PB,OC=12PB,∴OA=OB=OC=OP,故O為外接球的球心.又PA=2,AC=BC=1,∴AB=2,PB=6,∴外接球的半徑R=∴V球=43πR3=4π3×(62)3=6點(diǎn)睛:空間幾何體與球接、切問題的求解方法:(1)求解球與棱柱、棱錐的接、切問題時(shí),一般過球心及接、切點(diǎn)作截面,把空間問題轉(zhuǎn)化為平面圖形與圓的接、切問題,再利用平面幾何知識尋找?guī)缀沃性亻g的關(guān)系求解.(2)若球面上四點(diǎn)P,A,B,C構(gòu)成的三條線段PA,PB,PC兩兩互相垂直,且PA=a,PB=b,PC=c,一般把有關(guān)元素“補(bǔ)形”成為一個(gè)球內(nèi)接長方體,利用4R2=a2+b2+c2求解.16、【解析】

利用三角函數(shù)的圖象與性質(zhì)、誘導(dǎo)公式和數(shù)列的遞推公式,可得,再利用“累加”法和等差數(shù)列的前n項(xiàng)和公式,即可求解.【詳解】由題意,因?yàn)?,?dāng)時(shí),,又因?yàn)閷θ我獾膶?shí)數(shù),總有兩個(gè)不同的根,所以,所以,又,對任意的實(shí)數(shù),總有兩個(gè)不同的根,所以,又,對任意的實(shí)數(shù),總有兩個(gè)不同的根,所以,由此可得,所以,所以.故答案為:.【點(diǎn)睛】本題主要考查了三角函數(shù)的圖象與性質(zhì)的應(yīng)用,以及誘導(dǎo)公式,數(shù)列的遞推關(guān)系式和“累加”方法等知識的綜合應(yīng)用,著重考查了推理與運(yùn)算能力,屬于中檔試題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)和;(2)和【解析】

(1)設(shè),連接,分析易得,即有,解得的值,即可得到答案.(2)根據(jù)題意,分析可得:過A,P,三點(diǎn)的圓為以為直徑的圓,設(shè)的坐標(biāo)為,用表示過A,P,三點(diǎn)的圓為,結(jié)合直線與圓的位置關(guān)系,分析可得答案.【詳解】(1)根據(jù)題意,點(diǎn)P在直線l上,設(shè),連接,因?yàn)閳A的方程為,所以圓心,半徑,因?yàn)檫^點(diǎn)P作圓的切線PA,PB,切點(diǎn)為A,B;則有,且,易得,又由,即,則,即有,解得或,即的坐標(biāo)為和.(2)根據(jù)題意,是圓的切線,則,則過A,P,三點(diǎn)的圓為以為直徑的圓,設(shè)的坐標(biāo)為,,則以為直徑的圓為,變形可得:,即,則有,解得或,則當(dāng)和,時(shí),恒成立,則經(jīng)過A,P,三點(diǎn)的圓必經(jīng)過異于的某個(gè)定點(diǎn),且定點(diǎn)的坐標(biāo)和.【點(diǎn)睛】本題考查了直線與圓的位置關(guān)系、圓中的定點(diǎn)問題,考查學(xué)生分析問題、解決問題的能力,屬于中檔題.18、(1)(2)(3)【解析】

(1)利用小矩形的面積和為,求得值,即可求得答案;(2)中位數(shù)的計(jì)算方法為:把頻率分布直方圖分成兩個(gè)面積相等部分的平行于軸的直線橫坐標(biāo),即可求得答案;(3)據(jù)直方圖求出續(xù)駛里程在和續(xù)駛里程在的車輛數(shù),利用排列組合和概率公式求出其中恰有一輛車的續(xù)駛里程在的概率,即可求得答案.【詳解】(1)由直方圖可得:(2)根據(jù)中位數(shù)的計(jì)算方法為:把頻率分布直方圖分成兩個(gè)面積相等部分的平行于軸的直線橫坐標(biāo).直方圖可得:可得:輛純電動汽車?yán)m(xù)駛里程的中位數(shù).(3)續(xù)駛里程在的車輛數(shù)為:續(xù)駛里程在第五組的車輛數(shù)為.從輛車中隨機(jī)抽取輛車,共有中抽法,其中恰有一輛車的續(xù)駛里程在的抽法有種,其中恰有一輛車的續(xù)駛里程在的概率為.【點(diǎn)睛】本題考查根據(jù)條型統(tǒng)計(jì)圖求數(shù)據(jù)的中位數(shù)和根據(jù)組合數(shù)求概率問題,解題關(guān)鍵是掌握條型統(tǒng)計(jì)圖基礎(chǔ)知識和概率的求法,考查了分析能力和計(jì)算能力,屬于中檔題.19、(Ⅰ)見解析(Ⅱ)【解析】試題分析:(1)根據(jù)面面平行的性質(zhì)得到,,根據(jù)平行關(guān)系和長度關(guān)系得到點(diǎn)是的中點(diǎn),點(diǎn)是的中點(diǎn);(2),因?yàn)?,所以,進(jìn)而求得體積.詳解:(1)因?yàn)槠矫嫫矫?,平面平面,平面平面,所以,又因?yàn)?,所以四邊形是平行四邊形,所以,即點(diǎn)是的中點(diǎn).因?yàn)槠矫嫫矫妫矫嫫矫?,平面平面,所以,又因?yàn)辄c(diǎn)是的中點(diǎn),所以點(diǎn)是的中點(diǎn),綜上:分別是的中點(diǎn);(Ⅱ)因?yàn)椋?,又因?yàn)槠矫嫫矫妫云矫?;又因?yàn)?,所以.點(diǎn)睛:這個(gè)題目考查了面面平行的性質(zhì)應(yīng)用,空間幾何體的體積的求法,求椎體的體積,一般直接應(yīng)用公式底乘以高乘以三分之一,會涉及到點(diǎn)面距離的求法,點(diǎn)面距可以通過建立空間直角坐標(biāo)系來求得點(diǎn)面距離,或者尋找面面垂直,再直接過點(diǎn)做交線的垂線即可;當(dāng)點(diǎn)面距離不好求時(shí),還可以等體積轉(zhuǎn)化.20、(1),;(2).【解析】分析:(1)利用的關(guān)系,求解;倒序相加求。(2)先用錯(cuò)位相減求,分離參數(shù),使得對于一切的恒成立,轉(zhuǎn)化為求的最值。詳解:(1)時(shí)滿足上式,故∵=1∴∵①∴②∴①+②,得.(2)∵,∴∴①,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論