MATLAB符號(hào)數(shù)學(xué)工具箱省公開(kāi)課一等獎(jiǎng)全國(guó)示范課微課金獎(jiǎng)?wù)n件_第1頁(yè)
MATLAB符號(hào)數(shù)學(xué)工具箱省公開(kāi)課一等獎(jiǎng)全國(guó)示范課微課金獎(jiǎng)?wù)n件_第2頁(yè)
MATLAB符號(hào)數(shù)學(xué)工具箱省公開(kāi)課一等獎(jiǎng)全國(guó)示范課微課金獎(jiǎng)?wù)n件_第3頁(yè)
MATLAB符號(hào)數(shù)學(xué)工具箱省公開(kāi)課一等獎(jiǎng)全國(guó)示范課微課金獎(jiǎng)?wù)n件_第4頁(yè)
MATLAB符號(hào)數(shù)學(xué)工具箱省公開(kāi)課一等獎(jiǎng)全國(guó)示范課微課金獎(jiǎng)?wù)n件_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第十四章符號(hào)數(shù)學(xué)工具箱MATLAB所含有符號(hào)數(shù)學(xué)工具箱(symbolicMathToolbox)中定義了一個(gè)新數(shù)據(jù)結(jié)構(gòu),用來(lái)存放代表符號(hào)字符串,稱(chēng)為符號(hào)對(duì)象。能夠用來(lái)代表符號(hào)變量、表示式和矩陣等。在進(jìn)行符號(hào)計(jì)算時(shí),首先要定義基本符號(hào)對(duì)象(能夠是常數(shù)、變量以及表示式等),然后利用這些基本符號(hào)對(duì)象去組成新表示式,從而進(jìn)行所需符號(hào)運(yùn)算。在運(yùn)算中,凡是由包含符號(hào)對(duì)象表示式所生成新對(duì)象也那是符號(hào)對(duì)象。sym和syms是創(chuàng)建和定義基本符號(hào)對(duì)象兩個(gè)函數(shù),函數(shù)syms是sym簡(jiǎn)捷方式。1第1頁(yè)14.1符號(hào)表示式及運(yùn)算利用sym命令能夠創(chuàng)建符號(hào)變量和表示式。S=sym(arg):由表示式創(chuàng)建一個(gè)sym對(duì)象S,假如arg是一個(gè)字符串(string),則S是符號(hào)變量或符號(hào)數(shù);如明是數(shù)值標(biāo)量或矩陣,則S是這些給定數(shù)值符號(hào)形式。以下是sym函數(shù)調(diào)用形式詳細(xì)實(shí)現(xiàn)方式:x=sym(‘x’):建立符號(hào)變量x,變量值為單引號(hào)內(nèi)字符或字符串,這里是和變量名相同字符'x';x=sym(‘x’,‘real’):設(shè)定符號(hào)變量為實(shí)型變量(Real);x=sym(‘x’,‘unreal’):使x為純粹形式變量,沒(méi)有附加屬性;普通用來(lái)去除x實(shí)數(shù)特征,從mapple工作空間中去除掉。pi=sym('pi')和delta=sym('1/10'):建立符號(hào)數(shù),防止了浮點(diǎn)數(shù)本身近似,建立符號(hào)數(shù)是數(shù)值準(zhǔn)確表示。2第2頁(yè)[例14—1]鏈接Example1。符號(hào)表示式是代表數(shù)字、函數(shù)、算子和變量MATLAB字符串,或字符串?dāng)?shù)組。不要求變量有預(yù)先確定值。利用sym命令創(chuàng)建表示式:[例14—2]鏈接Example1_01。注意,該例子中用是顯式格式,在MATLAB能夠自己確定變量類(lèi)型場(chǎng)所下,通常不要求顯式函數(shù)sym,能夠直接用表示式。[例14—3]鏈接Example1_02。然而,很多時(shí)候sym是必要。尤其是建立符號(hào)數(shù)組時(shí),必須用函數(shù)sym,尤其地將字符串變?yōu)榉?hào)表示式。[例14—4]鏈接Example1_03。3第3頁(yè)MATLAB在內(nèi)部把符號(hào)表示式表示成字符串,與數(shù)字變量或運(yùn)算相區(qū)分;不然,這些符號(hào)表示式幾乎完全像基本MATLAB命令。符號(hào)表示式MATLAB表示式4第4頁(yè)許多符號(hào)函數(shù)能夠自動(dòng)將字符轉(zhuǎn)變?yōu)榉?hào)表示式。不過(guò)最簡(jiǎn)單形式(無(wú)引號(hào))要求—個(gè)參量,它是一個(gè)單字符字符串,不能包含空格。[例14—5]鏈接Example1_04。符號(hào)變量當(dāng)字符表示式中含有多于一個(gè)變量時(shí),只有一個(gè)變量是獨(dú)立變量。假如不告訴哪一個(gè)變量是獨(dú)立交量,則能夠經(jīng)過(guò)findsym函數(shù)、查詢(xún),找出符號(hào)表示式或符號(hào)矩陣中一個(gè)或全部變量。[例14—6]鏈接Example1_05。符號(hào)矩陣創(chuàng)建:[例14—7]鏈接Example1_06。提取分子和分母假如表示式是個(gè)有理分式(兩個(gè)多項(xiàng)式之比),利用numden來(lái)提取分子或分母。在必要時(shí)numden將表示式合并、有理化并返回所得分子和分母。5第5頁(yè)[例14—8]鏈接Example1_07。標(biāo)準(zhǔn)代數(shù)運(yùn)算很多標(biāo)準(zhǔn)代數(shù)運(yùn)算能夠在符號(hào)表示式上執(zhí)行:symadd,symsub,symmul,symdiv:加、減、乘、除兩個(gè)表示式Sympow:將一個(gè)表示式上升為另一個(gè)表示式冪次。[例14—9]鏈接見(jiàn)Example1_07。另一個(gè)通用函數(shù)可讓用戶(hù)用其它符號(hào)變量、表示式和算子創(chuàng)建新表示式。Symop:取由逗號(hào)隔開(kāi)參量。各個(gè)參量可為符號(hào)表示式、數(shù)值或算子,然后symop可將參量聯(lián)接起來(lái),返回最終所得表示式。[例14—10]鏈接見(jiàn)Example1_07。6第6頁(yè)高級(jí)運(yùn)算MATLAB含有對(duì)符號(hào)表示式執(zhí)行更高級(jí)運(yùn)算功效。compose:把f(x)和g(x)復(fù)合成f(g(x))。[例14—11]鏈接見(jiàn)Example1_07。finverse:求表示式函數(shù)逆,返回表示式逆函數(shù)。假如解不是唯一就給出警告。[例14—12]鏈接見(jiàn)Example1_07。Symsum:求表示式符號(hào)和,有四種形式:7第7頁(yè)[例14—13]鏈接見(jiàn)Example1_07。變換函數(shù)Sym:可獲取一個(gè)數(shù)字參量并將其轉(zhuǎn)換為符號(hào)表示式。Char:Convertsymobjecttostring。Numeric:功效恰好相反,它把一個(gè)符號(hào)常數(shù)(無(wú)變量符號(hào)表示式)變換為一個(gè)數(shù)值。(double—7.0版本)Eval:另一個(gè)可用于把符號(hào)常數(shù)變換為數(shù)字或計(jì)算表示式函數(shù)。[例14—14]鏈接見(jiàn)Example1_07。Sym2poly:將符號(hào)多項(xiàng)式變換成它MATLAB等價(jià)系數(shù)向量。poly2sym:功效恰好相反,并讓用戶(hù)指定用于所得結(jié)果表示式中變量。[例14—15]鏈接見(jiàn)Example1_07。8第8頁(yè)變量替換Subs:在符號(hào)表示式個(gè)進(jìn)行變量替換。subs(f,old,new):f是符號(hào)表示式,new和old是字符、字符串或其它符號(hào)表示式。[例14—16]鏈接見(jiàn)Example1_07。14.2微積分微分符號(hào)表示式微分以四種形式利用函數(shù)diff。[例14—17]鏈接Example2。diff也可對(duì)數(shù)組進(jìn)行運(yùn)算。假如F是符號(hào)向量或數(shù)組,diff(F)對(duì)數(shù)組內(nèi)各個(gè)元素進(jìn)行微分。diff也用計(jì)算數(shù)值向量或矩陣數(shù)值差分。[例14—18]鏈接Example2。9第9頁(yè)積分int(f):積分函數(shù),f為符號(hào)表示式,力圖求出另一符號(hào)表示式F使diff(F)=f。積分比微分復(fù)雜得多。積分或逆求導(dǎo)不一定是以封閉形式存在,或許存在但軟件可能找不到,或者軟件可顯著地求解,但超出內(nèi)存或時(shí)間限制。當(dāng)MATLAB不能找到逆導(dǎo)數(shù)時(shí),它將返回未經(jīng)計(jì)算命令。[例14—19]鏈接Example2_01

。14.3符號(hào)表示式畫(huà)圖在許多場(chǎng)所,將表示式可視化是有利。MATLAB提供了函數(shù)ezplot來(lái)完成該任務(wù)。[例14—20]鏈接Example3。10第10頁(yè)14.4符號(hào)表示式簡(jiǎn)化及格式化有時(shí)MATLAB返回符號(hào)表示式難以了解,有許多工具能夠使表示式變得更易讀懂。Pretty:以類(lèi)似于數(shù)學(xué)書(shū)本上形式來(lái)顯示符號(hào)表示式。Collect:合并全部相同項(xiàng)Factor:表示成多項(xiàng)式乘積Expand:多項(xiàng)式展開(kāi)[例14—21]鏈接Example4。simplify:利用各種類(lèi)型代數(shù)恒等式,包含求和、積分和分?jǐn)?shù)冪、三角、指數(shù)和log函數(shù)、Bessel函數(shù)、超幾何函數(shù)和g函數(shù),來(lái)簡(jiǎn)化表示式。[例14—22]鏈接Example4_01。simple函數(shù):最有用、但也是最不正統(tǒng),試用了幾個(gè)不一樣簡(jiǎn)化工具,然后選擇在結(jié)果表示式中含有最少字符那種形式。[例14—23]鏈接見(jiàn)Example4_01。11第11頁(yè)14.5可變精度算術(shù)運(yùn)算因?yàn)閿?shù)值精度受每次操作所保留數(shù)值限制,所以數(shù)值任何運(yùn)算都會(huì)引入舍入誤差,重復(fù)屢次數(shù)值運(yùn)算會(huì)造成累積誤差。而對(duì)符號(hào)表示式運(yùn)算是非常準(zhǔn)確,因?yàn)椴恍枰M(jìn)行數(shù)值運(yùn)算,所以無(wú)舍入誤差。對(duì)符號(hào)運(yùn)算結(jié)果用函數(shù)eval或numeric,僅在結(jié)果轉(zhuǎn)換時(shí)會(huì)引入舍入誤差。maple缺省為18位精度。Maple缺省準(zhǔn)確度能夠由digits(n)來(lái)改變,其中n是所期望準(zhǔn)確度數(shù)值。另外有一個(gè)函數(shù)vpa,能夠用任何精度實(shí)施單個(gè)計(jì)算。它以缺省精度或任何指定精度對(duì)單個(gè)符號(hào)表示式進(jìn)行計(jì)算,并以一樣精度來(lái)顯示結(jié)果。[例14—24]鏈接Example5。將函數(shù)vpa作用于符號(hào)矩陣,對(duì)它每一個(gè)元素進(jìn)行計(jì)算。[例14—25]鏈接見(jiàn)Example5。12第12頁(yè)14.6方程求解用MATLAB所含有符號(hào)工具能夠求解符號(hào)方程。求解單個(gè)代數(shù)方程假如表示式不是一個(gè)方程式(不合等號(hào)),則在求解之前solve將表示式置成等于0。[例14—26]鏈接見(jiàn)Example6。注意:在求解周期函數(shù)方程時(shí),有沒(méi)有窮多解。在這種情況下,solve對(duì)解搜索范圍限制在靠近于零有限范圍,并返回非唯一解子集。代數(shù)方程組求解[例14—27]鏈接見(jiàn)Example6。13第13頁(yè)單個(gè)微分方程dsolve:計(jì)算常微分方程符號(hào)解。用字母D來(lái)表示求微分。D2,D3等等表示重復(fù)求微分,并以此來(lái)設(shè)定方程。任何D后所跟字母為因變量。方程d2y/dx2=0用符號(hào)表示式D2y=0來(lái)表示。比如,一階方程dy/dx=1+y2通解為,[例14—28]鏈接見(jiàn)Example6。二階微分方程例子,該方程有兩個(gè)初始條件:微分方程含有一階以上項(xiàng):[例14—29]鏈接見(jiàn)Example6。14第14頁(yè)函數(shù)dsolve也可同時(shí)處理若干個(gè)微分方程式,下面有兩個(gè)線(xiàn)性一階方程,[例14—30]鏈接見(jiàn)Example6。14.7線(xiàn)性代數(shù)和矩陣符號(hào)矩陣[例14—31]鏈接見(jiàn)Example7。代數(shù)運(yùn)算用函數(shù)symadd,symsub,symmul和symdiv,對(duì)符號(hào)矩陣能夠執(zhí)行許多通用代數(shù)運(yùn)算用sympow可計(jì)算乘冪,用transpose計(jì)算符號(hào)矩陣轉(zhuǎn)置。7.0版本已和數(shù)值矩陣代數(shù)運(yùn)算統(tǒng)一。微分方程組15第15頁(yè)[例14—32]鏈接見(jiàn)Example7。線(xiàn)性代數(shù)運(yùn)算用函數(shù)inv和determ,可計(jì)算符號(hào)矩陣逆陣以及行列式。[例14—33]鏈接見(jiàn)Example7_01。linsolve(A,B)對(duì)X方陣求解矩陣方程A*X=B.[例14—34]鏈接見(jiàn)Example7_02。其它特征symop將其參量串接

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論