2025年統(tǒng)編版高一數(shù)學(xué)上冊(cè)階段測(cè)試試卷含答案_第1頁(yè)
2025年統(tǒng)編版高一數(shù)學(xué)上冊(cè)階段測(cè)試試卷含答案_第2頁(yè)
2025年統(tǒng)編版高一數(shù)學(xué)上冊(cè)階段測(cè)試試卷含答案_第3頁(yè)
2025年統(tǒng)編版高一數(shù)學(xué)上冊(cè)階段測(cè)試試卷含答案_第4頁(yè)
2025年統(tǒng)編版高一數(shù)學(xué)上冊(cè)階段測(cè)試試卷含答案_第5頁(yè)
已閱讀5頁(yè),還剩19頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

…………○…………內(nèi)…………○…………裝…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線…………○…………※※請(qǐng)※※不※※要※※在※※裝※※訂※※線※※內(nèi)※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁(yè),總=sectionpages22頁(yè)第=page11頁(yè),總=sectionpages11頁(yè)2025年統(tǒng)編版高一數(shù)學(xué)上冊(cè)階段測(cè)試試卷含答案考試試卷考試范圍:全部知識(shí)點(diǎn);考試時(shí)間:120分鐘學(xué)校:______姓名:______班級(jí):______考號(hào):______總分欄題號(hào)一二三四五六總分得分評(píng)卷人得分一、選擇題(共5題,共10分)1、設(shè)m,x∈R,M=x2+2m2,N=mx+m2-1;則M,N的關(guān)系為()

A.M>N

B.M<N

C.M≥N

D.M≤N

2、【題文】若一個(gè)幾何體的三視圖;其正視圖和側(cè)視圖均為矩形;俯視圖為正三角形,尺寸如圖所示,則該幾何體的體積為。

A.B.C.D.3、【題文】已知平面上的點(diǎn)則滿足條件的點(diǎn)在平面上組成的圖形的面積為_______A.B.C.D.4、【題文】正四棱錐V—ABCD的五個(gè)頂點(diǎn)在同一個(gè)球面上,若其底面邊長(zhǎng)為4,側(cè)棱長(zhǎng)為

則AB兩點(diǎn)的球面距為()A.B.C.D.5、【題文】已知全集集合則()A.B.C.D.評(píng)卷人得分二、填空題(共5題,共10分)6、不等式的解集為_________.7、已知f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=x2-x,則f(-1)=____.8、【題文】已知方程有兩個(gè)相異的正實(shí)數(shù)解,則實(shí)數(shù)的取值范圍是__________9、【題文】已知全集集合則=____.10、【題文】直線y=1與曲線y=x2-|x|+2a有四個(gè)交點(diǎn),則a的取值范圍是________.評(píng)卷人得分三、作圖題(共5題,共10分)11、如圖A、B兩個(gè)村子在河CD的同側(cè),A、B兩村到河的距離分別為AC=1千米,BD=3千米,且知道CD=3千米,現(xiàn)在要在河邊CD上建一水廠,向A、B兩村送自來(lái)水,鋪設(shè)管道費(fèi)用為每千米2000元,請(qǐng)你在CD上選擇水廠位置O,使鋪設(shè)管道的費(fèi)用最省,并求出其費(fèi)用.12、作出函數(shù)y=的圖象.13、畫出計(jì)算1++++的程序框圖.14、請(qǐng)畫出如圖幾何體的三視圖.

15、繪制以下算法對(duì)應(yīng)的程序框圖:

第一步;輸入變量x;

第二步,根據(jù)函數(shù)f(x)=

對(duì)變量y賦值;使y=f(x);

第三步,輸出變量y的值.評(píng)卷人得分四、證明題(共4題,共32分)16、如圖;已知AB是⊙O的直徑,P是AB延長(zhǎng)線上一點(diǎn),PC切⊙O于C,AD⊥PC于D,CE⊥AB于E,求證:

(1)AD=AE

(2)PC?CE=PA?BE.17、初中我們學(xué)過(guò)了正弦余弦的定義,例如sin30°=,同時(shí)也知道,sin(30°+30°)=sin60°≠sin30°+sin30°;根據(jù)如圖,設(shè)計(jì)一種方案,解決問(wèn)題:

已知在任意的三角形ABC中,AD⊥BC,∠BAD=α,∠CAD=β,設(shè)AB=c,AC=b;BC=a

(1)用b;c及α,β表示三角形ABC的面積S;

(2)sin(α+β)=sinαcosβ+cosαsinβ.18、求證:(1)周長(zhǎng)為21的平行四邊形能夠被半徑為的圓面所覆蓋.

(2)桌面上放有一絲線做成的線圈,它的周長(zhǎng)是2l,不管線圈形狀如何,都可以被個(gè)半徑為的圓紙片所覆蓋.19、已知G是△ABC的重心,過(guò)A、G的圓與BG切于G,CG的延長(zhǎng)線交圓于D,求證:AG2=GC?GD.評(píng)卷人得分五、計(jì)算題(共3題,共21分)20、如圖,已知⊙O1與⊙O2相交于A、B兩點(diǎn),過(guò)A作⊙O1的切線交⊙O2于E,連接EB并延長(zhǎng)交⊙O1于C,直線CA交⊙O2于點(diǎn)D.

(1)當(dāng)A;D不重合時(shí);求證:AE=DE

(2)當(dāng)D與A重合時(shí),且BC=2,CE=8,求⊙O1的直徑.21、已知二次函數(shù)f(x)=ax2+bx-3(a≠0)滿足f(2)=f(4),則f(6)=____.22、已知A={x|x3+3x2+2x>0},B={x|x2+ax+b≤0}且A∩B={x|0<x≤2},A∪B={x|x>﹣2},求a、b的值.評(píng)卷人得分六、綜合題(共4題,共40分)23、如圖;Rt△ABC的兩條直角邊AC=3,BC=4,點(diǎn)P是邊BC上的一動(dòng)點(diǎn)(P不與B重合),以P為圓心作⊙P與BA相切于點(diǎn)M.設(shè)CP=x,⊙P的半徑為y.

(1)求證:△BPM∽△BAC;

(2)求y與x的函數(shù)關(guān)系式;并確定當(dāng)x在什么范圍內(nèi)取值時(shí),⊙P與AC所在直線相離;

(3)當(dāng)點(diǎn)P從點(diǎn)C向點(diǎn)B移動(dòng)時(shí);是否存在這樣的⊙P,使得它與△ABC的外接圓相內(nèi)切?若存在,求出x;y的值;若不存在,請(qǐng)說(shuō)明理由.

24、如圖1,點(diǎn)C將線段AB分成兩部分,如果,那么稱點(diǎn)C為線段AB的黃金分割點(diǎn).某研究小組在進(jìn)行課題學(xué)習(xí)時(shí),由黃金分割點(diǎn)聯(lián)想到“黃金分割線”,類似地給出“黃金分割線”的定義:直線l將一個(gè)面積為S的圖形分成兩部分,這兩部分的面積分別為S1,S2,如果;那么稱直線l為該圖形的黃金分割線.

(1)研究小組猜想:在△ABC中;若點(diǎn)D為AB邊上的黃金分割點(diǎn)(如圖2),則直線CD是△ABC的黃金分割線.你認(rèn)為對(duì)嗎?為什么?

(2)研究小組在進(jìn)一步探究中發(fā)現(xiàn):過(guò)點(diǎn)C任作一條直線交AB于點(diǎn)E,再過(guò)點(diǎn)D作直線DF∥CE,交AC于點(diǎn)F,連接EF(如圖3),則直線EF也是△ABC的黃金分割線.請(qǐng)你說(shuō)明理由.25、已知:甲;乙兩車分別從相距300(km)的M、N兩地同時(shí)出發(fā)相向而行;其中甲到達(dá)N地后立即返回,圖1、圖2分別是它們離各自出發(fā)地的距離y(km)與行駛時(shí)間x(h)之間的函數(shù)圖象.

(1)試求線段AB所對(duì)應(yīng)的函數(shù)關(guān)系式;并寫出自變量的取值范圍;

(2)當(dāng)它們行駛到與各自出發(fā)地距離相等時(shí),用了(h);求乙車的速度;

(3)在(2)的條件下,求它們?cè)谛旭偟倪^(guò)程中相遇的時(shí)間.26、先閱讀下面的材料再完成下列各題

我們知道,若二次函數(shù)y=ax2+bx+c對(duì)任意的實(shí)數(shù)x都有y≥0,則必有a>0,△=b2-4ac≤0;例如y=x2+2x+1=(x+1)2≥0,則△=b2-4ac=0,y=x2+2x+2=(x+1)2+1>0,則△=b2-4ac<0.

(1)求證:(a12+a22++an2)?(b12+b22++bn2)≥(a1?b1+a2?b2++an?bn)2

(2)若x+2y+3z=6,求x2+y2+z2的最小值;

(3)若2x2+y2+z2=2;求x+y+z的最大值;

(4)指出(2)中x2+y2+z2取最小值時(shí),x,y,z的值(直接寫出答案).參考答案一、選擇題(共5題,共10分)1、A【分析】

由題意,M-N=(x2+2m2)-(mx+m2-1)=(x-)2+m2+1>0

∴M>N

故選A.

【解析】【答案】先作差;再進(jìn)行配方,可得M-N>0,根據(jù)兩數(shù)大小比較的方法,可得結(jié)論.

2、D【分析】【解析】此幾何體為一個(gè)正三棱柱,底面三角形的高為底面邊長(zhǎng)為所以其體積為【解析】【答案】D3、D【分析】【解析】解:

【解析】【答案】D4、B【分析】【解析】正四棱錐V—ABCD的高為h,則設(shè)球半徑為R,則。

設(shè)AB所對(duì)的球心角為由余弦定理得:

所以AB兩點(diǎn)的球面距離是【解析】【答案】B5、C【分析】【解析】因?yàn)榧先?/p>

所以【解析】【答案】C二、填空題(共5題,共10分)6、略

【分析】試題分析:即考點(diǎn):分式不等式的解法.【解析】【答案】7、略

【分析】

∵f(1)=1-1=0

∵f(x)是定義在R上的奇函數(shù)。

∴f(-1)=-f(1)

∴f(1)=0

故答案為0.

【解析】【答案】將x>0的解析式中的x用1代替;求出f(1);利用奇函數(shù)的定義得到f(-1)與f(1)的關(guān)系,求出f(-1).

8、略

【分析】【解析】

試題分析:先將方程轉(zhuǎn)化為一元二次方程;再結(jié)合根與系數(shù)的關(guān)系式及判別式求解。

解:令則原方程化為

根據(jù)題意,方程有兩個(gè)大于1的相異實(shí)根.

令則

考點(diǎn):指數(shù)函數(shù);根的判別式;根與系數(shù)的關(guān)系.

點(diǎn)評(píng):總結(jié)一元二次方程根的情況與判別式△的關(guān)系:

(1)△>0?方程有兩個(gè)不相等的實(shí)數(shù)根;

(2)△=0?方程有兩個(gè)相等的實(shí)數(shù)根;

(3)△<0?方程沒(méi)有實(shí)數(shù)根.

此題不僅考查了根的判別式的應(yīng)用,還應(yīng)用了根與系數(shù)的關(guān)系以及配方法的運(yùn)用,增根的判斷.【解析】【答案】9、略

【分析】【解析】

試題分析:

考點(diǎn):集合的交并補(bǔ)運(yùn)算。

點(diǎn)評(píng):基礎(chǔ)題型,學(xué)生易得分【解析】【答案】10、略

【分析】【解析】根據(jù)畫出函數(shù)圖像,再利用數(shù)形結(jié)合思想解決問(wèn)題?!窘馕觥俊敬鸢浮咳?、作圖題(共5題,共10分)11、略

【分析】【分析】作點(diǎn)A關(guān)于河CD的對(duì)稱點(diǎn)A′,當(dāng)水廠位置O在線段AA′上時(shí),鋪設(shè)管道的費(fèi)用最?。窘馕觥俊窘獯稹拷猓鹤鼽c(diǎn)A關(guān)于河CD的對(duì)稱點(diǎn)A′;連接A′B,交CD與點(diǎn)O,則點(diǎn)O即為水廠位置,此時(shí)鋪設(shè)的管道長(zhǎng)度為OA+OB.

∵點(diǎn)A與點(diǎn)A′關(guān)于CD對(duì)稱;

∴OA′=OA;A′C=AC=1;

∴OA+OB=OA′+OB=A′B.

過(guò)點(diǎn)A′作A′E⊥BE于E;則∠A′EB=90°,A′E=CD=3,BE=BD+DE=3+1=4;

∴在Rt△A′BE中,A′B==5(千米);

∴2000×5=10000(元).

答:鋪設(shè)管道的最省費(fèi)用為10000元.12、【解答】圖象如圖所示。

【分析】【分析】描點(diǎn)畫圖即可13、解:程序框圖如下:

【分析】【分析】根據(jù)題意,設(shè)計(jì)的程序框圖時(shí)需要分別設(shè)置一個(gè)累加變量S和一個(gè)計(jì)數(shù)變量i,以及判斷項(xiàng)數(shù)的判斷框.14、解:如圖所示:

【分析】【分析】由幾何體是圓柱上面放一個(gè)圓錐,從正面,左面,上面看幾何體分別得到的圖形分別是長(zhǎng)方形上邊加一個(gè)三角形,長(zhǎng)方形上邊加一個(gè)三角形,圓加一點(diǎn).15、解:程序框圖如下:

【分析】【分析】該函數(shù)是分段函數(shù),當(dāng)x取不同范圍內(nèi)的值時(shí),函數(shù)解析式不同,因此當(dāng)給出一個(gè)自變量x的值時(shí),必須先判斷x的范圍,然后確定利用哪一段的解析式求函數(shù)值,因?yàn)楹瘮?shù)解析式分了三段,所以判斷框需要兩個(gè),即進(jìn)行兩次判斷,于是,即可畫出相應(yīng)的程序框圖.四、證明題(共4題,共32分)16、略

【分析】【分析】(1)連AC;BC;OC,如圖,根據(jù)切線的性質(zhì)得到OC⊥PD,而AD⊥PC,則OC∥PD,得∠ACO=∠CAD,則∠DAC=∠CAO,根據(jù)三角形相似的判定易證得Rt△ACE≌Rt△ACD;

即可得到結(jié)論;

(2)根據(jù)三角形相似的判定易證Rt△PCE∽R(shí)t△PAD,Rt△EBC∽R(shí)t△DCA,得到PC:PA=CE:AD,BE:CE=CD:AD,而CD=CE,即可得到結(jié)論.【解析】【解答】證明:(1)連AC、BC,OC,如圖,

∵PC是⊙O的切線;

∴OC⊥PD;

而AD⊥PC;

∴OC∥PD;

∴∠ACO=∠CAD;

而∠ACO=∠OAC;

∴∠DAC=∠CAO;

又∵CE⊥AB;

∴∠AEC=90°;

∴Rt△ACE≌Rt△ACD;

∴CD=CE;AD=AE;

(2)在Rt△PCE和Rt△PAD中;∠CPE=∠APD;

∴Rt△PCE∽R(shí)t△PAD;

∴PC:PA=CE:AD;

又∵AB為⊙O的直徑;

∴∠ACB=90°;

而∠DAC=∠CAO;

∴Rt△EBC∽R(shí)t△DCA;

∴BE:CE=CD:AD;

而CD=CE;

∴BE:CE=CE:AD;

∴BE:CE=PC:PA;

∴PC?CE=PA?BE.17、略

【分析】【分析】(1)過(guò)點(diǎn)C作CE⊥AB于點(diǎn)E;根據(jù)正弦的定義可以表示出CE的長(zhǎng)度,然后利用三角形的面積公式列式即可得解;

(2)根據(jù)S△ABC=S△ABD+S△ACD列式,然后根據(jù)正弦與余弦的定義分別把BD、AD、CD,AB,AC轉(zhuǎn)化為三角形函數(shù),代入整理即可得解.【解析】【解答】解:(1)過(guò)點(diǎn)C作CE⊥AB于點(diǎn)E;

則CE=AC?sin(α+β)=bsin(α+β);

∴S=AB?CE=c?bsin(α+β)=bcsin(α+β);

即S=bcsin(α+β);

(2)根據(jù)題意,S△ABC=S△ABD+S△ACD;

∵AD⊥BC;

∴AB?ACsin(α+β)=BD?AD+CD?AD;

∴sin(α+β)=;

=+;

=sinαcosβ+cosαsinβ.18、略

【分析】【分析】(1)關(guān)鍵在于圓心位置;考慮到平行四邊形是中心對(duì)稱圖形,可讓覆蓋圓圓心與平行四邊形對(duì)角線交點(diǎn)疊合.

(2)“曲“化“直“.對(duì)比(1),應(yīng)取均分線圈的二點(diǎn)連線段中點(diǎn)作為覆蓋圓圓心.【解析】【解答】

證明:(1)如圖1;設(shè)ABCD的周長(zhǎng)為2l,BD≤AC,AC;BD交于O,P為周界上任意一點(diǎn),不妨設(shè)在AB上;

則∠1≤∠2≤∠3,有OP≤OA.又AC<AB+BC=l,故OA<.

因此周長(zhǎng)為2l的平行四邊形ABCD可被以O(shè)為圓心;半徑為的圓所覆蓋;命題得證.

(2)如圖2,在線圈上分別取點(diǎn)R,Q,使R、Q將線圈分成等長(zhǎng)兩段,每段各長(zhǎng)l.又設(shè)RQ中點(diǎn)為G,M為線圈上任意一點(diǎn),連MR、MQ,則GM≤(MR+MQ)≤(MmR+MnQ)=

因此,以G為圓心,長(zhǎng)為半徑的圓紙片可以覆蓋住整個(gè)線圈.19、略

【分析】【分析】構(gòu)造以重心G為頂點(diǎn)的平行四邊形GBFC,并巧用A、D、F、C四點(diǎn)共圓巧證乘積.延長(zhǎng)GP至F,使PF=PG,連接FB、FC、AD.因G是重心,故AG=2GP.因GBFC是平行四邊形,故GF=2GP.從而AG=GF.又∠1=∠2=∠3=∠D,故A、D、F、C四點(diǎn)共圓,從而GA、GF=GC?GD.于是GA2=GC?GD.【解析】【解答】證明:延長(zhǎng)GP至F;使PF=PG,連接AD,BF,CF;

∵G是△ABC的重心;

∴AG=2GP;BP=PC;

∵PF=PG;

∴四邊形GBFC是平行四邊形;

∴GF=2GP;

∴AG=GF;

∵BG∥CF;

∴∠1=∠2

∵過(guò)A;G的圓與BG切于G;

∴∠3=∠D;

又∠2=∠3;

∴∠1=∠2=∠3=∠D;

∴A;D、F、C四點(diǎn)共圓;

∴GA;GF=GC?GD;

即GA2=GC?GD.五、計(jì)算題(共3題,共21分)20、略

【分析】【分析】(1)通過(guò)證角相等來(lái)證邊相等.連接AB,那么ABED就是圓O2的內(nèi)接四邊形,根據(jù)內(nèi)接四邊形的性質(zhì),∠ABC=∠D,那么只要再得出∠DAE=∠ABC即可得證,我們發(fā)現(xiàn)∠EAD的對(duì)頂角正好是圓O1的弦切角;因此∠DAE=∠ABC,由此便可求出∠DAE=∠D,根據(jù)等角對(duì)等邊也就得出本題要求的結(jié)論了;

(2)DA重合時(shí),CA與圓O2只有一個(gè)交點(diǎn),即相切.那么CA,AE分別是⊙O1和⊙O2的直徑(和切線垂直弦必過(guò)圓心),根據(jù)切割線定理AC2=CB?CE,即可得出AC=4,即圓O1的直徑是4.【解析】【解答】解:(1)證明:連接AB,在EA的延長(zhǎng)線上取一點(diǎn)F,作⊙O1的直徑AM;連接CM;

則∠ACM=90°;

∴∠M+∠CAM=90°;

∵AE切⊙O1于A;

∴∠FAM=∠EAM=90°;

∴∠FAC+∠CAM=90°;

∴∠FAC=∠M=∠ABC,

即∠FAC=∠ABC;

∵∠FAC=∠DAE;

∴∠ABC=∠DAE;

而∠ABC是⊙O2的內(nèi)接四邊形ABED的外角;

∴∠ABC=∠D;

∴∠DAE=∠D;

∴EA=ED.

(2)當(dāng)D與A重合時(shí),直線CA與⊙O2只有一個(gè)公共點(diǎn);

∴直線AC與⊙O2相切;

∴CA,AE分別是⊙O1和⊙O2的直徑;

∴由切割線定理得:AC2=BC?CE;

∴AC=4.

答:⊙O1直徑是4.21、略

【分析】【分析】先把x=2代入得出一個(gè)方程,再把x=4得出一個(gè)方程,根據(jù)f(2)=f(4),即可得出f(6)=的值.【解析】【解答】解:∵f(x)=ax2+bx-3;

∴x=2時(shí),f(2)=4a+2b-3;

x=4時(shí),f(4)=16a+4b-3;

∵f(2)=f(4);

∴4a+2b-3=16a+4b-3;

∴6a+b=0;

∵f(6)=36a+6b-3=6(6a+b)-3=-3;

故答案為-3.22、解:A={x|﹣2<x<﹣1或x>0},設(shè)B=[x1,x2],由A∩B={x|0<x≤2},知x2=2,且﹣1≤x1≤0,①由A∪B={x|x>﹣2},知﹣2≤x1≤﹣1.②由①②知x1=﹣1,x2=2,∴a=﹣(x1+x2)=﹣1,b=x1x2=﹣2,答:a=﹣1,b=﹣2.【分析】【分析】根據(jù)題意,設(shè)B=[x1,x2],由A∩B={x|0<x≤2},A∪B={x|x>﹣2},分析可得x1,x2的值,即B;進(jìn)而可得a、b的值.六、綜合題(共4題,共40分)23、略

【分析】【分析】(1)由∠B=∠B;∠C=∠BMP=90°證明;

(2)勾股定理求出AB的長(zhǎng);相似三角形求出y與x的函數(shù)關(guān)系式,求出取值范圍;

(3)根據(jù)內(nèi)切圓的特點(diǎn),求出x,y的值.【解析】【解答】(1)證明:∵AB切⊙P于點(diǎn)M;

∴∠PMB=∠C=90°.

又∵∠B=∠B;

∴△BPM∽△BAC.

(2)解:∵AC=3;BC=4,∠C=90°;

∴AB=5.

∵;

∴;

∴(0≤x<4).

當(dāng)x>y時(shí);⊙P與AC所在的直線相離.

即x>;

得x>;

∴當(dāng)<x<4時(shí);⊙P與AC所在的直線相離.

(3)解:設(shè)存在符合條件的⊙P.

得OP=2.5-y,而BM=;

∴OM=;

有;

∴y1=0(不合題意舍去),y2=.

∴時(shí),x=.24、略

【分析】【分析】(1)設(shè)△ABC的邊AB上的高為h,由三角形的面積公式即可得出=,=,再由點(diǎn)D為邊AB的黃金分割點(diǎn)可得出=;故可得出結(jié)論;

(2)由DF∥CE可知△DEC和△FCE的公共邊CE上的高也相等,故S△DEC=S△FCE,設(shè)直線EF與CD交于點(diǎn)G,由同底等高的三角形的面積相等可知S△DEG=S△FEG,故可得出S△ADC=S四邊形AFGD+S△FCG=S△AEF,再由S△BDC=S四邊形BEFC,再由=可知=,故直線EF也是△ABC的黃金分割線.【解析】【解答】解:(1)直線CD是△ABC的黃金分割線.理由如下:

設(shè)△ABC的邊AB上的高為h.

∵S△ADC=AD?h,S△BDC=BD?h,S△ABC=AB?h;

∴=,=;

又∵點(diǎn)D為邊AB的黃金分割點(diǎn);

∴=;

∴=;

∴直線CD是△ABC的黃金分割線;

(2)∵DF∥CE;

∴△DEC和△FCE的公共邊CE上的高也相等;

∴S△DEC=S△FCE;

設(shè)直線EF與CD交于點(diǎn)G;

∴S△DEG=S△FCG;

∴S△ADC=S四邊形AFGD+S△FCG=S四邊形AFGD+S△DGE=S△AEF;

S△BDC=S四邊形BEFC;.

又∵=;

∴=;

∴直線EF也是△ABC的黃金分割線.25、略

【分析】【分析】(1)首先設(shè)線段AB所表示的函數(shù)的解析式為y=kx+b,根據(jù)題意知道函數(shù)經(jīng)過(guò)(3,300),(;0)兩點(diǎn),利用待定系數(shù)法即可確定函數(shù)的解析式和自變量的取值范圍;

(2)首先可以判定x=在3<x≤中,然后把x=代入(1)的函數(shù)解析式y(tǒng)=-80x+540中可以求出甲所走的路程;同時(shí)也知道了乙的路程,最后利用速度公式即可求解;

(3)首先確定依有兩次相遇,①當(dāng)0≤x≤3時(shí),100x+40x=300,②當(dāng)3<x≤時(shí),(540-80x)+40x=300,分別解這兩個(gè)方程即可求解.【解析】【解答】解:(1)設(shè)線段AB所表示的函數(shù)的解析式為y=kx+b;

把(3,300),(,0)代入其中得;

解之得;

∴線段AB所表示的函數(shù)解析式為y=-80x+540;

自變量的取值范圍為3<x≤;

(2)∵x=在3<x≤中;

∴把x=代入(1)的函數(shù)解析式y(tǒng)=-80x+540中;

得y甲=180;

∴乙車的速度為180÷=40km/h;

(3)依題意有兩次相遇;

①當(dāng)0≤x≤3時(shí);100x+40x=300;

∴x=;

②當(dāng)3<x≤時(shí);(540-80x)+40x=300;

∴x=6;

∴當(dāng)它們行駛了小時(shí)和6小時(shí)時(shí)兩車相遇.26、略

【分析】【分析】(1)首先構(gòu)造二次函數(shù):f(x)=(a1x+b1)2+(a2x+b2)2++(anx+bn)2=(a12+a22++an2)x2+2(a1b1+a2b2++anbn)x+(b12+b22++bn2),由(a1x+b1)2+(a2x

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論