江蘇省白蒲中學(xué)2020高二數(shù)學(xué) 極限與導(dǎo)數(shù) 導(dǎo)數(shù)的概念教案 蘇教版(通用)_第1頁
江蘇省白蒲中學(xué)2020高二數(shù)學(xué) 極限與導(dǎo)數(shù) 導(dǎo)數(shù)的概念教案 蘇教版(通用)_第2頁
江蘇省白蒲中學(xué)2020高二數(shù)學(xué) 極限與導(dǎo)數(shù) 導(dǎo)數(shù)的概念教案 蘇教版(通用)_第3頁
江蘇省白蒲中學(xué)2020高二數(shù)學(xué) 極限與導(dǎo)數(shù) 導(dǎo)數(shù)的概念教案 蘇教版(通用)_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、導(dǎo)數(shù)的概念教學(xué)目標(biāo)與要求:理解導(dǎo)數(shù)的概念并會運用概念求導(dǎo)數(shù)。教學(xué)重點:導(dǎo)數(shù)的概念以及求導(dǎo)數(shù)教學(xué)難點:導(dǎo)數(shù)的概念教學(xué)過程:一、導(dǎo)入新課:上節(jié)我們討論了瞬時速度、切線的斜率和邊際成本。雖然它們的實際意義不同,但從函數(shù)角度來看,卻是相同的,都是研究函數(shù)的增量與自變量的增量的比的極限。由此我們引出下面導(dǎo)數(shù)的概念。二、新授課:1.設(shè)函數(shù)在處附近有定義,當(dāng)自變量在處有增量時,則函數(shù)相應(yīng)地有增量,如果時,與的比(也叫函數(shù)的平均變化率)有極限即無限趨近于某個常數(shù),我們把這個極限值叫做函數(shù)在處的導(dǎo)數(shù),記作,即注:1.函數(shù)應(yīng)在點的附近有定義,否則導(dǎo)數(shù)不存在。2.在定義導(dǎo)數(shù)的極限式中,趨近于0可正、可負(fù)、但不為0,

2、而可能為0。3.是函數(shù)對自變量在范圍內(nèi)的平均變化率,它的幾何意義是過曲線上點()及點)的割線斜率。4.導(dǎo)數(shù)是函數(shù)在點的處瞬時變化率,它反映的函數(shù)在點處變化的快慢程度,它的幾何意義是曲線上點()處的切線的斜率。因此,如果在點可導(dǎo),則曲線在點()處的切線方程為。5.導(dǎo)數(shù)是一個局部概念,它只與函數(shù)在及其附近的函數(shù)值有關(guān),與無關(guān)。6.在定義式中,設(shè),則,當(dāng)趨近于0時,趨近于,因此,導(dǎo)數(shù)的定義式可寫成。7.若極限不存在,則稱函數(shù)在點處不可導(dǎo)。8.若在可導(dǎo),則曲線在點()有切線存在。反之不然,若曲線在點()有切線,函數(shù)在不一定可導(dǎo),并且,若函數(shù)在不可導(dǎo),曲線在點()也可能有切線。一般地,其中為常數(shù)。特別地

3、,。如果函數(shù)在開區(qū)間內(nèi)的每點處都有導(dǎo)數(shù),此時對于每一個,都對應(yīng)著一個確定的導(dǎo)數(shù),從而構(gòu)成了一個新的函數(shù)。稱這個函數(shù)為函數(shù)在開區(qū)間內(nèi)的導(dǎo)函數(shù),簡稱導(dǎo)數(shù),也可記作,即函數(shù)在處的導(dǎo)數(shù)就是函數(shù)在開區(qū)間上導(dǎo)數(shù)在處的函數(shù)值,即。所以函數(shù)在處的導(dǎo)數(shù)也記作。注:1.如果函數(shù)在開區(qū)間內(nèi)每一點都有導(dǎo)數(shù),則稱函數(shù)在開區(qū)間內(nèi)可導(dǎo)。2.導(dǎo)數(shù)與導(dǎo)函數(shù)都稱為導(dǎo)數(shù),這要加以區(qū)分:求一個函數(shù)的導(dǎo)數(shù),就是求導(dǎo)函數(shù);求一個函數(shù)在給定點的導(dǎo)數(shù),就是求導(dǎo)函數(shù)值。它們之間的關(guān)系是函數(shù)在點處的導(dǎo)數(shù)就是導(dǎo)函數(shù)在點的函數(shù)值。3.求導(dǎo)函數(shù)時,只需將求導(dǎo)數(shù)式中的換成就可,即4.由導(dǎo)數(shù)的定義可知,求函數(shù)的導(dǎo)數(shù)的一般方法是:(1).求函數(shù)的改變量。(2).求平均變化率。(3).取極限,得導(dǎo)數(shù)。例1.求在3處的導(dǎo)數(shù)。例2.已知函數(shù)(1)求。(2)求函數(shù)在2處的導(dǎo)數(shù)。小結(jié):理解導(dǎo)數(shù)的概念并會運用概念求導(dǎo)數(shù)。練習(xí)與作業(yè):1.求下列函數(shù)的導(dǎo)數(shù):(1);(2)(3) (3)2.求函數(shù)在1,0,1處導(dǎo)數(shù)。3.求下列函數(shù)在指定點處的導(dǎo)數(shù):(1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論