等比數(shù)列前n項和(第一課時)_第1頁
等比數(shù)列前n項和(第一課時)_第2頁
等比數(shù)列前n項和(第一課時)_第3頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、課題: 2.5等比數(shù)列的前n項和授課類型:新授課(2課時)教學目標知識與技能:掌握等比數(shù)列的前n項和公式及公式證明思路;會用等比數(shù)列的前n項和公式解決有關等比數(shù)列的一些簡單問題。過程與方法:經(jīng)歷等比數(shù)列前n 項和的推導與靈活應用,總結數(shù)列的求和方法,并能在具體的問題情境中發(fā)現(xiàn)等比關系建立數(shù)學模型、解決求和問題。情感態(tài)度與價值觀:在應用數(shù)列知識解決問題的過程中,要勇于探索,積極進取,激發(fā)學習數(shù)學的熱情和刻苦求是的精神。教學重點等比數(shù)列的前n項和公式推導教學難點靈活應用公式解決有關問題教學過程.課題導入創(chuàng)設情境提出問題課本P62“國王對國際象棋的發(fā)明者的獎勵”.講授新課分析問題如果把各格所放的麥粒

2、數(shù)看成是一個數(shù)列,我們可以得到一個等比數(shù)列,它的首項是1,公比是2,求第一個格子到第64個格子各格所放的麥粒數(shù)總合就是求這個等比數(shù)列的前64項的和。下面我們先來推導等比數(shù)列的前n項和公式。1、 等比數(shù)列的前n項和公式: 當時, 或 當q=1時,當已知, q, n 時用公式;當已知, q, 時,用公式.公式的推導方法一:一般地,設等比數(shù)列它的前n項和是由得 當時, 或 當q=1時,公式的推導方法二:有等比數(shù)列的定義,根據(jù)等比的性質(zhì),有即 (結論同上)圍繞基本概念,從等比數(shù)列的定義出發(fā),運用等比定理,導出了公式公式的推導方法三: (結論同上)解決問題有了等比數(shù)列的前n項和公式,就可以解決剛才的問題。由可得=。這個數(shù)很大,超過了。國王不能實現(xiàn)他的諾言。例題講解課本P65-66的例1、例2 例3解略.課堂練習課本P66的練習1、2、3.課時小結等比數(shù)列求和公式:當q=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論