平面向量的坐標(biāo)表示與運(yùn)算PPT教案_第1頁
平面向量的坐標(biāo)表示與運(yùn)算PPT教案_第2頁
平面向量的坐標(biāo)表示與運(yùn)算PPT教案_第3頁
平面向量的坐標(biāo)表示與運(yùn)算PPT教案_第4頁
平面向量的坐標(biāo)表示與運(yùn)算PPT教案_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、平面向量的坐標(biāo)表示與運(yùn)算平面向量的坐標(biāo)表示與運(yùn)算2.3.2 平面向量的坐標(biāo)表示平面向量的坐標(biāo)表示平面向量的坐標(biāo)表示平面向量的坐標(biāo)表示1在平面內(nèi)有點(diǎn)在平面內(nèi)有點(diǎn)A和點(diǎn)和點(diǎn)B,向量怎樣向量怎樣 表示?表示?AB2平面向量基本定理的內(nèi)容?什么叫基底?平面向量基本定理的內(nèi)容?什么叫基底?a =xi + yj有且只有一對(duì)實(shí)有且只有一對(duì)實(shí)數(shù)數(shù)x、y,使得使得3分別與分別與x 軸軸、y 軸方向相同的兩單位向量軸方向相同的兩單位向量i 、j 能否作能否作為基底?為基底?Oxyij任一向量任一向量a ,用這組基底可表示為用這組基底可表示為a(x,y)叫做向量叫做向量a的坐標(biāo),記作的坐標(biāo),記作a=xi + yj那

2、么那么i =( , ) j =( , )0 =( , ) 1 00 10 0第1頁/共14頁2.3.2 平面向量的坐標(biāo)表示平面向量的坐標(biāo)表示OxyijaA(x, y)a1以原點(diǎn)以原點(diǎn)O為起點(diǎn)作為起點(diǎn)作 ,點(diǎn),點(diǎn)A的位置由誰確定的位置由誰確定?aOA 由由a 唯一確定唯一確定2點(diǎn)點(diǎn)A的坐標(biāo)與向量的坐標(biāo)與向量a 的坐標(biāo)的關(guān)系?的坐標(biāo)的關(guān)系??jī)烧呦嗤瑑烧呦嗤蛄肯蛄縜坐標(biāo)(坐標(biāo)(x ,y)一一 一一 對(duì)對(duì) 應(yīng)應(yīng)概念理解概念理解3兩個(gè)向量相等的充要條件,利用坐標(biāo)如何表示??jī)蓚€(gè)向量相等的充要條件,利用坐標(biāo)如何表示?2121yyxxba 且且第2頁/共14頁2.3.2 平面向量的坐標(biāo)表示平面向量的坐標(biāo)表示

3、解:由圖可知解:由圖可知jiAAAAa3221 )3 , 2( a同理,同理,)3 , 2(32 jib)3, 2(32 jic)3, 2(32 jid例例1如圖,用基底如圖,用基底i ,j 分別表示向量分別表示向量a、b 、c 、d ,并并求它們的坐標(biāo)求它們的坐標(biāo)AA2A1第3頁/共14頁2.3.3平面向量的坐標(biāo)運(yùn)算平面向量的坐標(biāo)運(yùn)算平面向量的坐標(biāo)運(yùn)算平面向量的坐標(biāo)運(yùn)算1.已知已知a , b ,求,求a+b,a-b),(11yx ),(22yx 解:解:a+b=( i + j ) + ( i + j )1x1y2x2y=( + )i+( + )j1x2x1y2y即即),(2121yyxx a

4、 + b同理可得同理可得a - b),(2121yyxx 兩個(gè)向量和與差的坐標(biāo)分別等于這兩向量相應(yīng)坐標(biāo)的和與差兩個(gè)向量和與差的坐標(biāo)分別等于這兩向量相應(yīng)坐標(biāo)的和與差第4頁/共14頁2.3.3平面向量的坐標(biāo)運(yùn)算平面向量的坐標(biāo)運(yùn)算2已知已知 求求),(),(2211yxByxA,AB),(11yxA),(22yxBxyO解:解:OAOBAB ),(),(2211yxyx ),(1212yyxx 一個(gè)向量的坐標(biāo)等于表示此向量的有向線段的終點(diǎn)的坐一個(gè)向量的坐標(biāo)等于表示此向量的有向線段的終點(diǎn)的坐標(biāo)減去始點(diǎn)的坐標(biāo)標(biāo)減去始點(diǎn)的坐標(biāo) 實(shí)數(shù)與向量的積的坐標(biāo)等于這個(gè)實(shí)數(shù)乘原來的向量的相實(shí)數(shù)與向量的積的坐標(biāo)等于這個(gè)實(shí)

5、數(shù)乘原來的向量的相應(yīng)坐標(biāo)應(yīng)坐標(biāo)),(yx a第5頁/共14頁2.3.3 平面向量的坐標(biāo)運(yùn)算平面向量的坐標(biāo)運(yùn)算 例例2已知已知a=(2,1),),b=(-3,4),),求求a+b,a-b,3a+4b的坐標(biāo)的坐標(biāo)解:解: a+b=(2,1)+(-3,4)=(-1,5););a-b=(2,1)-(-3,4)=(5,-3););3a+4b=3(2,1)+4(-3,4) =(6,3)+(-12,16) =(-6,19)第6頁/共14頁2.3.3 平面向量的坐標(biāo)運(yùn)算平面向量的坐標(biāo)運(yùn)算 例例3 已知已知 ABCD的三個(gè)頂點(diǎn)的三個(gè)頂點(diǎn)A、B、C的坐標(biāo)分別的坐標(biāo)分別為為(2,1)、()、( 1,3)、()、(3

6、,4),求頂點(diǎn)),求頂點(diǎn)D的坐標(biāo)的坐標(biāo)解:設(shè)頂點(diǎn)解:設(shè)頂點(diǎn)D的坐標(biāo)為(的坐標(biāo)為(x,y),(),),(211321( AB)4 ,3(yxDC ,得,得由由DCAB )4 ,3()2 , 1(yx yx4231 22yx),的坐標(biāo)為(的坐標(biāo)為(頂點(diǎn)頂點(diǎn)22D第7頁/共14頁2.3.4平面向量共線的坐標(biāo)表示平面向量共線的坐標(biāo)表示2.如何用坐標(biāo)表示向量平行如何用坐標(biāo)表示向量平行(共線共線)的充要條件的充要條件? 會(huì)得到什么樣的重要結(jié)論會(huì)得到什么樣的重要結(jié)論?1.向量向量 與非零向量與非零向量 平行平行(共線共線)的充要條件是有且的充要條件是有且 只有一個(gè)實(shí)數(shù)只有一個(gè)實(shí)數(shù) , 使得使得abba設(shè)設(shè)即

7、即 中中,至少有一個(gè)不為至少有一個(gè)不為0 ,則由則由 得得),(11yxa ),(22yxb ba0,b22, yx01221yxyx01221yxyx這就是說這就是說: 的充要條件是的充要條件是 )0(/bba第8頁/共14頁3. 向量平行向量平行(共線共線)充要條件的兩種形式充要條件的兩種形式:0)0),(),(/)2(;)0(/) 1 (12212211yxyxbyxbyxabababba2.3.4 平面向量共線的坐標(biāo)表示平面向量共線的坐標(biāo)表示第9頁/共14頁例例 題題1.已知已知ybayba求且,/), 6(),2 , 4(2.已知已知 求證求證: A、B、C 三點(diǎn)共線。三點(diǎn)共線。),5 ,2(),3 , 1(),1, 1(CBA3.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論