不連續(xù)及不穩(wěn)定數(shù)據(jù)管理英文_第1頁
不連續(xù)及不穩(wěn)定數(shù)據(jù)管理英文_第2頁
不連續(xù)及不穩(wěn)定數(shù)據(jù)管理英文_第3頁
不連續(xù)及不穩(wěn)定數(shù)據(jù)管理英文_第4頁
不連續(xù)及不穩(wěn)定數(shù)據(jù)管理英文_第5頁
已閱讀5頁,還剩29頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、Efficient Management of Inconsistent and Uncertain DataRene J. MillerUniversity of TorontoContributorsAriel Fuxman, PhD ThesisMicrosoft Search LabsJim Gray SIGMOD 2008 Dissertation AwardPeriklis Andritsos, PhDJiang Du, MSElham Fazli, MSDiego Fuxman, UndergradDirty DatabasesThe presence of dirty data

2、 is a major problem in enterprisesTraditional solution: data cleaning3No. I dont see Any problem with the dataLimitations of Data CleaningSemi-automatic processRequires highly-qualified domain experts Time consumingMay not be possible to wait until the database is cleanOperational systems answer que

3、ries assuming clean dataOur WorkIdentify classes of queries for which we can obtain meaningful answers from potentially dirty databasesShow how to do it efficiently and reusing existing database technology5Why is this Business Intelligence?Business intelligence (BI) refers to technologies, applicati

4、ons and practices for the collection, integration, analysis, and presentation of information.The goal of BI is to support better decision making, based on information.DBMS should provide meaningful query answers even over data that is dirtyOutline Introduction Semantics for dirty databases Contribut

5、ions Conclusions7Outline Introduction Semantics for dirty databases Contributions Conclusions8A Data Integration ExampleIntegrating customer data9SalesShippingCustomer SupportWeb FormsDemographic DataIntegratedCustomerDatabaseMatching and Merging10CustidPeterNameAddressIncomePeter Yarrow276 College

6、Street40KPaul Stookey100 Bloor Street400KMary Travers20 Union Street110KNameAddressIncomePeter Yarrow276 College Street40KPaul Stookey100 Bloor Street400KMary Travers20 Union Street110KCustidPeterNameAddressIncomePeter Yarrow276 College St.200KPaul Stookey100 Bloor St.400KMary Travers20 Union St.130

7、KNameAddressIncomePeter Yarrow276 College St.200KPaul Stookey100 Bloor St.400KMary Travers20 Union St.130KWebSalesMatching and merging are two fundamental tasks in data integration NameAddressIncomePeter Yarrow276 College Street200KPaul Stookey100 Bloor St.400KMary Travers20 Union St.130KNameAddress

8、IncomePeter Yarrow276 College Street40KPaul Stookey100 Bloor Street400KMary Travers20 Union Street110KTrue Disagreement Between Sources11CustidPeterWebSalesWhats Peters salary?CustidPeterInconsistent Integrated DatabasesIn the absence of complete resolution rules12custidincomePeter40KPaul 400KMary11

9、0KcustidincomePeter 200KPaul400KMary130KcustidincomePeter40KPeter200KPaul400KMary110KMary130KSATISFY custid KEYVIOLATES custid KEYWebSalesInconsistent Integrated DatabaseCustidincomePeter40KPeter200KPaul400KMary110KMary130KCustidincomePeter40KPeter200KPaul400KMary110KMary130KCustidincomePeter40KPete

10、r200KPaul400KMary110KMary130KQuery: “Get customers who make more than 100K”13saleswebsales/websaleswebPeter,Paul,MaryAre we sure that we want to offer a card to Peter?Example: Offering a Platinum credit cardQuerying Inconsistent DatabasesAggressive: Get customers who possibly make more than 100KPete

11、r, Paul, Mary Conservative: Get customers who certainly make more than 100KPaul, Mary14Querying Inconsistent DatabasesFormal SemanticsRelated to semantics for querying incomplete data Imielinski Lipski 84, Abiteboul Duschka 98Possible world: “complete” databasesConsistent answersProposed by Arenas,

12、Bertossi, and Chomicki in 1999Corresponds to conservative semanticsPossible world: “consistent” databases15custidincomePeter40KPeter200KPaul400KMary110KMary130KcustidincomePeter40KPeter200KPaul400KMary110KMary130KcustidincomePeter40KPeter200KPaul400KMary110KMary130KcustidincomePeter40KPeter200KPaul4

13、00KMary110KMary130KcustidincomePeter40KPeter200KPaul400KMary110KMary130K16Peter40KPaul400KMary110KPeter40KPaul400KMary130KPeter200KPaul400KMary110KPeter200KPaul400KMary130Ksaleswebsales/websaleswebInconsistent databaseRepairsKey: custidConsistent Answers17CONSISTENT ANSWERSAnswers obtainedno matter

14、which repair we choosePeter40KPaul400KMary110KPeter40KPaul400KMary130KPeter200KPaul400KMary110KPeter200KPaul400KMary130KQuery=“Get customers who make more than 100K”qqqqCONSISTENT ANSWER=Paul,MaryRepairsConsistent AnswersPaulMaryPaulMaryPeterPaulMaryPeterPaulMaryPaulMaryPaulMaryPeterPaulMaryPeterPau

15、lMaryOutline Introduction Semantics for dirty databases Contributions Conclusions18When We StartedSemantics well understoodProblemPotentially HUGE number of repairs!Negative results Chomicki et al 02, Arenas et al. 01, Cali et al 04 Few tractability results Arenas et al. 99, Arenas et al. 01Logic pr

16、ogramming approaches Bravo and Bertossi 03, Eiter et al. 03Expressive queries and constraintsComputationally expensiveApplicable only to small databases with small number of inconsistencies19Our Proposal: ConQuer20Commercial databaseengineSQL query q KeysRewrittenSQL query Q*ConQuersRewriting Algori

17、thmInconsistentdatabaseConsistent answer to qClass of Rewritable QueriesConQuer handles a broad class of SPJ queries withSet semanticsBag semantics, grouping, and aggregationNo restrictions onNumber of relationsNumber of joinsConditions or built-in predicatesKey-to-key joinsThe class is “maximal”21W

18、hy not all SPJ queries?Some SPJ queries cannot be rewritten into SQLConsistent query answering is coNP-complete even for some SPJ queries and key constraintsMaximality of ConQuers classMinimal relaxations lead to intractabilityRestrictions only onNonkey-to-nonkey joinsSelf joinsNonkey-to-key joins t

19、hat form a cycle22Example: A Rewritable QuerySELECT c_custkey, c_name, sum(l_extendedprice * (1 - l_discount) as revenue, c_acctbal, n_name, c_address, c_phone, c_commentFROM customer, orders, lineitem, nationWHERE c_custkey = o_custkey and l_orderkey = o_orderkey and o_orderdate = 1993-10-01 and o_

20、orderdate date(1993-10-01) + 3 MONTHS and l_returnflag = R and c_nationkey = n_nationkeyGROUP BY c_custkey, c_name, c_acctbal, c_phone, n_name, c_address, c_commentORDER BY revenue desc23TPC-H Query 10Rewritings Can Get Quite ComplexRewriting of TPC-H Query 10Can this rewriting be executed efficient

21、ly?1.7 overhead20 GB database, 5% inconsistency Experimental EvaluationGoalsQuantify the overhead of the rewritingsAssess the scalability of the approach Determine sensitivity of the rewritten queries to level of inconsistency of the instanceQueries and databasesRepresentative decision support queri

22、es (TPC-H benchmark)TPC-H databases, altered to introduce inconsistenciesDatabase parametersdatabase sizepercentage of the database that is inconsistentconflicts per key value (in inconsistent portion)2526Worst Case5.8 overheadSelectivity 98.56 %Size (GB)5 % inconsistent tuples2 conflicts per incons

23、istent key valueScalabilityBest Case1.2 overheadSelectivity 0.001 %Contributions TheoryFormal characterization of a broad class of queries For which computing consistent answers is tractable under key constraintsThat can be rewritten into first-order/SQLQuery rewriting algorithms for a class of Sele

24、ct-Project-Join queries With set semanticsWith bag semantics, grouping, and aggregationMaximality of the class of queries27Contributions PracticeImplementation of ConQuer Designed to compute consistent answers efficientlyMultiple rewriting strategiesExperimental validation of efficiency and scalability Representative queries from TPC-HLarge databases28Uncertain DatacustidincomePeter40KPaul 400KMary110KcustidincomePeter 200KPaul400KMary130KcustidincomePeter40KPeter200KPaul400KMary110KMary130KWebSalesIntegrated Database0.30.7PROVENANCE INFORMATION(e.g., source re

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論