版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、班級:商學院. :學號:指導教師:完成時間:年 月曰農(nóng)村居民家庭人均純收入影響因素分析摘要:隨著我國工業(yè)化與城市化建設的發(fā)展,農(nóng)村問題越來越凸顯, 留守問題、看病問題、養(yǎng)老問題等,農(nóng)民收入問題亦是國家各界人士 十分關注的問題。本文旨在用計量經(jīng)濟學方法簡單分析農(nóng)村居民家庭 人均純收入的影響因素。關鍵字:農(nóng)村居民家庭人均純收入 財政年度支農(nóng)支出 農(nóng)業(yè)機械 總動力 農(nóng)作物播種總面積 鄉(xiāng)村就業(yè)人數(shù) 鄉(xiāng)村人口數(shù)第一產(chǎn)業(yè)總產(chǎn)值正文:一、引言國家“十二五”規(guī)劃第六章拓寬農(nóng)民增收渠道中明確提出:加 大引導和扶持力度,提高農(nóng)民職業(yè)技能和創(chuàng)收能力,千方百計拓寬農(nóng) 民增收渠道,促進農(nóng)民收入持續(xù)較快增長。同時“十二五
2、”規(guī)劃中明 確提出以下幾點:1、穩(wěn)定糧食播種面積、優(yōu)化品種結構、提高單產(chǎn)和品質(zhì)。2、健全農(nóng)業(yè)補貼制度,堅持對種糧農(nóng)民實行直接補貼,繼續(xù)實行良 種補貼和農(nóng)機具購置補貼,完善農(nóng)資綜合補貼動態(tài)調(diào)整機制。3、推進農(nóng)業(yè)技術集成化、勞動過程機械化、生產(chǎn)經(jīng)營信息化。結合 這幾方面,本文從第一產(chǎn)業(yè)總產(chǎn)值、財政年度支農(nóng)支出、農(nóng)業(yè)機械總 動力等幾個方面分析其對農(nóng)村居民家庭人均純收入的影響。二、預設模型令農(nóng)村居民家庭人均純收入丫(元)為被解釋變量,農(nóng)作物播種 總面積X1(千公頃)、鄉(xiāng)村就業(yè)人數(shù)X2 (萬人)、鄉(xiāng)村人口數(shù)X3(萬 人)、第一產(chǎn)業(yè)總產(chǎn)值X4 (億元)、財政年度支農(nóng)支出X5 (億元) 農(nóng)業(yè)機械總動力X6(
3、萬千瓦)為解釋變量,據(jù)此建立回歸模型。三、數(shù)據(jù)搜集從中國統(tǒng)計年鑒得到如下數(shù)據(jù):年度農(nóng)村居農(nóng)作物鄉(xiāng)村就鄉(xiāng)村人第一產(chǎn)財政年農(nóng)業(yè)機民家庭播種總業(yè)人數(shù)口數(shù)X3業(yè)總產(chǎn)度支農(nóng)械總動人均純 收入Y (元)面積X1(千公 頃)X2(萬 人)(萬人)值 X4(億元)支出X5(億元)力X6(萬千瓦)1990686.3148362.347708841385062221.7628707.71991708.6149585.848026846205342.2243.5529388.61992784149007.148291849965866.6269.0430308.41993921.6147740.7485468534
4、46963.763323.4231816.619941221148240.648802856819572.695399.733802.519951577.7149879.3490258594712135.81430.2236118.0519961926.1152380.6490288508514015.39510.0738546.919972090.1153969.2490398417714441.89560.7742015.619982162155705.7490218315314817.63626.0245207.7119992210.3156372.8489828203814770.03
5、677.4648996.1220002253.4156299.8489348083714944.72766.8952573.6120012366.4155707.9486747956315781.27917.9655172.120022475.6154635.5481217824116537.021102.757929.8520032622.2152415475067685117381.71134.8660386.52420042936.4153552.469717570521412.71693.7964027.953120053254.9155487.4625874544224201792.
6、468397.875200635871521494534673160240402161.3572522.120074140.4153463.4436871496286273404.776589.6920084760.6156265.4346170399337024544.0182190.4720095153.2158613.4250668938352266720.4187496.1520105919160674.8414186711340533.68129.5892410.4四、建立模型1、散點圖分析2、單因素或多變量間關系分析 Group: U樹TITLE D Workfi le: UIST
7、ITTLECXU ntitl ed| 口 I B 1 Z3ViewObjectj Rrir| Name F寸FFt Wmtu SpecIrCorrelation MatrixYX1X2X3X4X5X6Y1.QODDOOO.80D987-O.004B91-D.S6D23SD.59B239D.923B20D. 975356X109009371 000000-3.520B63-3.6823273.7830560.&35B661772623X2X).884B910 物 6631.0000000.918402-3.891367-1S60B63-1864062K3-0 S5D238刀 6823?70 91
8、34021 DDOOOO據(jù) M5376682731-3 961893X40 99B2390.7S3B560.891367-3.H53761 0000001&274SS0.972 翊M50 &23B200 695666-0 95DB63-D 88271D笠斑81 ooooooD B71277XS0 5793560.772623-3.964052-3.991D933.&T2&2416712771.000000L=Ulf由散點圖分析和變量間關系分析可以看出被解釋變量農(nóng)村居民家庭人均純收入丫(元)與解釋變量農(nóng)作物播種總面積X1、 鄉(xiāng) 村 就業(yè)人數(shù)X2、鄉(xiāng)村人口數(shù)X3、第一產(chǎn)業(yè)總產(chǎn)值X4、財政年度支農(nóng)支
9、 出X5、農(nóng)業(yè)機械總動力X6呈線性關系,因此該回歸模型設為:Y=B+B 1X1+B 2&+B 3X3+8 4X4+8 5X5+8 6X6+ 口3、模型預模擬用Eviews做OLS回歸分析得: Equation: UNTITLED Workfile: UNTITLEDUntitled| = | 回 | S3 |vie叫叩11亦時司月噲司 EsummtE | 5tats |Dependent Variable: YMethod: Least Squaresate: 06/03/12 Time: 21:58Sample: 1990 2010Included observations: 20Varia
10、bleCoefficientStd. Errort-StatisticProb.C-6067.3551991.962-3.0459340.0094X10.0202910.0114631.7701310 1001-0 0803230.066175-1.2213430.24360.071S620.0439411.630B670 12690 0936500.01S051S.2155320 00000.0029620.0430460.0638200.94620.0367970.0153282 4006210.0320R-squared0.998843Mean dependent var2626.790
11、Adjusted R-squared0.9963083.D. dependent var14B1.92OS.E. of regression60.94368Akaike info criteri&r11.32716Sumi squared rsid48291 64Schwarz criterion11 67566Log likelihood-106.2716F-statistic1869.907Durbin-Watson stat2.060182Prob(F-statisti:)C.000000Y=-6067.355+0.02029X1-0.08082X2+0.07165X3+0.09355X
12、4+0.002962X5+0.03680X6(-3.04593) (1.77013)(-1.2213 )(1.6307)(6.2155)(0.06882)(2.4006)R 2=0.99882=0.9983F=1869.907D.W.=2.0602五、模型檢驗1、計量經(jīng)濟學意義檢驗 (1)多重共線性檢驗與解決求相關矩陣得到: Group: UNTTLED Workfile: UMTTTUDXUrrthlad| 回S3 |Vi&xjFr匹 QbjectJ grhtn F=如 打ebI* S卜己匕| 5姑白| Sp丘匚 |coirralatlan MatrixYXIX2X3皿15X6Y1 0000
13、000.900937-3 664B91-3.&bD2393.9902393.&23D203.57935GX1O.80D9671.00DDOO-0.62BB63-0.682327D.783B560.6S5B66D.772B23X2-0 994B91-3 52BG631 0000003.910402-3.891367-3.&5DB63-3.064052X3-Q.J5D238-Q.6823270.91B4021.QODDOO-D.945376-D.S 32791-D.581B93X4O.990E3907830560.091367-3.94537S1.0000003.3274330.9 茂 9241X
14、50.923S200.695666-0L96DB63-D.882791D.9274S31.0QDDOOD.871277X60 打33580 宓 623-0 064052-3 931093。9蒞也I 871771 000000nrJ卜發(fā)現(xiàn)模型存在多重共線性。接下來運用逐步回歸法對模型進行修正:將各個解釋變量分別加入模型,進行一元回歸:作Y與X1的回歸,結果如下:Dependent Variable: Y Method: Least Squares ate: 06/03/12 Time: 22:16Sample: 1990 2010Included observations: 21Variable
15、CoefficientStJ. Error t-StatisticProb.C4S679.0G854&.810-5.6038320.0000X10.3334620.06S7175.904943o.oaooR-squared0.&S3408Mean dependent var2559.348Adjusted R.-squared0,635167S.D. dependent var147.614S.E. of re-gression891 89EDAkaike info criterion16一51497Sum squared resi-d15114052S-chwarz criterion1S.
16、61445Log likelihood-171 4072F-statist g35.81954urbin-Watso-n stat0.319004ProtjfF-statistic)0.000009作Y與X2的回歸,結果如下:rn Equation: EQ12 WarkFle: UWTITLED-Urititled = | 回 | 3 View I Proc I Object I PrintlName Freeze EEtimatE Forecast! Stats Resids IDependent Variable: Y Method: Least Squares ate: 06/03/12
17、 Time: 22:17 Sample: 1990 2010 Included observations: 21VariableCoeffi-cientStd. Error t-Statisti-cProb.C28798.133124.S7&.2157680.0000X2-0.55 S6520.056206-8.4056 6 80.0000R-squared0.788112Mean dependent var269.84SAdjusted R.-squared0.776961S.D. depen(F-statistic)o.oaoooo作Y與X3的回歸,結果如下:Q Equation; EQ1
18、3 WorkFile; UNTITLE&UntitledPrintNameFreeze IEstinna teForesca戒| StatsResids IDependent Variable: Y Method: Least Squares Date: OEJO3/12 Time: 22:17 S-ample: 1990 2010 Included obserYations: 20VariableCoefficientStd. Error t-Statisti-cProb.C20673.S61398 一 56614.782180.0000X3-0.22S9740.017613-12.9412
19、40.0000R.-squared0.902952Mean dependent var2526J90Adjusted R-squared0.897561S.D. depencient var1481.S20S.E. ofregressio-n474 3063Akaike infio criterion15.26 B22Sum squared res id4049379.Schwarz criterion15.35579Log likelihood-150 5622F-statistic167.4757Durbin-Wats-on statO.16460SProb(F-statisti-c)0.
20、000000作Y與X4的回歸,結果如下: Equation; EQ14 Wo-rkfile; UhlTFTLE&XUntitled = | 回 | 蹈 Vi巳w|Fggbj*t| Print Name Fr巳巳日吁| Ewtirmtel F口匚匚日耽 S1ats|N雨ds|Dependent Variable: Method: Least SquaresDate: OB/03/12 Time: 22:17Sample; 1990 2010Include-d observations; 21VariableCoefficientStd. Error t-Statisti-cProb.C-63.0
21、098842.22730-1.4921600.1521X40 1474330.0020810.838980.0000R-squared0.99622SMean dependent var25.59.848A-djusted R-squared0.996030S.D. dependent war1476.614S.E. of regression93.04413Akaike infio criterion11.99442Sum squared res id164487.0Schwarz criterion12.09390Log lilkelihood-123.9414F-statistic501
22、8.1B1Durbin-Wats-on stat1.241548Pro b(F-stati Stic0.000000作Y與X5的回歸,結果如下:View| Frcxz| Object PrintlNarne Freeze Estiirate Forecast Stats| Rjesidsepen-dent Variable: Y Method: Least Squares ate: 06/03/12 Time: 22:18Sample: 1990 2010Included observations: 21VariableCoefficientSt-d. Error t-StatisticPro
23、b.C1475.635163.15909.0441510.0000X50.621砌0 05906610.,523270.0000R-squarei0.853552Mean depenient 何2559.848Adjusted R-squared0 845844S.D. dependent varU76.&14S.E. of regression575 7576Akaike infio criterion15.65349Sum squared resid6386258.Schwarz criterion15.75297Lo-g likelihood-162.3&16F-statistic110
24、.7391urbin-Watson stat0.216775Pro b(F-stati Stic)0.000000E3作Y與X6的回歸,結果如下:Dependent Variable: YMethcxj: Least Squares ate: D&/03/12 Time: 22:18S-ample: 1990 2010Included observations: 21VariableCoefficientStd. Error t-StatiSticPro-b.C-1319 718191.8911-B.8774360.0000X60.07180S0.00333721.5155B0.0000R-s
25、quaredQ.9 網(wǎng) 574Mean dependent var2559.843Adjusted R-squared0.958459S.D. dependent 切1476.E14S.E. of regression300.8115Akaike info criterion14.34124Sum squared res id171K64Schwarz criterion14.44072Log likeliho-txi-148.5830F-statistic462.9200Durbin-Wats-or stat0.305528Prob(F-stati Stic)0.000000IO Eclja
26、Cir,; EQ16 WorkfiIe: UNTTLEDUntitled!=i而訕 Poc| dlbj&t| Prin t| Name I Freeze Estiniaite | F口resca st Stats | Reisjd s|依據(jù)可決系數(shù)最大的原則選取X6作為進入回歸模型的第一個解釋變量,再依次將其余變量分別代入回歸得:作Y與X6、X1的回歸,結果如下:底Proc| PbjEctl Print| NaEe|FrEEze| EstiEate|FerEca5iz|5tats|ResiddDependent Variable: Y Method: Least Squares Date: 0
27、6/09/12 Time: 12:50 Sample: 1990 2010 Include-d abseivati&ns: 21VariableCoefficientStd. Errort-StatisticProb.C7329.7664329.490-1.529860.1077X60 0660540 00526812.538360.0000X10.0412150 029&6J1.3894670.1E16R-squared0.964353Mean -dependent var2559.848Adjusted R-squared0-960437S.D. dependent var1476.E14
28、S.E. of regression29370*7Akaike info criterion14.33459Sum squared re aid1552724.Schwarz criterion14 43361Log likeihood-U7 5132F-statistic24JJ622Durbin-Watson stat0.298684.Pro b(F-stati Stic)0.000000作Y與X6、X2的回歸,結果如下: Equation; UNTITLED WorkFile;咪曝牝Untitled| 目 | S3 Vievvl Proc Object I Print Name Free
29、je| EstiE 曰足| Fcareca呂ResidslDependent Variable: Y Method: Least Squares ate: 06/09/12 Time: 12:51 Sample: 1990 2010 Included observations: 21VariableCoefficientStd. Erro-rt-StatisticProb.C3733.59528&5.54&1.3029270.2090 x&0.0620750.0063519.7734100.0000X2-0.0360370.054349-1.7B70410.0942R-squareJ0.966
30、402Mean dependent var2S59.B4SAdjusted R-squared0.962&6 9S.D. dependent var1476.614S.E &f regression285.2984Akaike info criterion14.27G51Sum squared resid146S113.Schwarz-criterion1442573Log likelihood-146.9034F-statistic258.8769Durbin-Watson sLat0.313811Pro bF-stati stic)0.000000作Y與X6、X3的回歸,結果如下:View
31、| Pec| 0切8國 Print可加忡氏花| EstimatEil Forecagt|stats|Rjesids|Dependent Variable: YMethod: Least Squares ate: D6J09/12 Time: 12:52S-ample: 1990 2010Included observations! 20VariableCoefficientSid. Errort-StatisticProb.C-8630.824567 土 9721.51 盟 190.1470X&0.0950590 0181965.2240610.0001X30.0764500.吒痢1 一283
32、 9450.2164R-squared0.962750Mean -dependent var2626790Adjusted R-squared0.958368S. D. dependent var1481.920S.E. of regressio-n302.3691Akaike info criterion14.39866Sum squared resid1554-260.Schwarz criterio-n14.54801Log likeliho-cxi-140.9866F-stati stic219.6908Durbin-Watson stat0.329402Pro b(F-stati S
33、tic)0.000000作Y與X6、X4的回歸,結果如下:O Equation: EQA4 WorkFile: 4Untitleda EMi已w| Proc| Dfaj已ct| Print| Name|Freeze EstiEate|Fermcawi:|tats|Rsjds|Dependent Variable: YMethcxi: Least SquaresDate: 06/0/12 Time: 12:S3Samiple: 1990 2010Include-d observations: 21VariableCoefficientStd. Errort-StatisticPro-b.C-29
34、3 889577.37295-3.7983500.0013X60.0120740 0036313.3253230.0038X40.1237420.00732116.903250.0000R-squared0.997663Mean dependent var2559.B48A-djusted R-squar&d0.997404S.D. dependent var1476.G14S.E. of regression7523755Akai Ice info criterion11.B1074Sum squared resid101892.4Schwarz criterion11.76996Log l
35、ikeliho-oi-118.9128F-stati stic3842 907Durbin-Watson stat1 252559Pro b(F-stati stic)0.000000作Y與X6、X5的回歸,結果如下:斷 Ew|Prx| Dhject| Print Name I Freese I Estinriate I Forecast! Stats I ResidslDependent Variable: Y Method: Least Squares Date: 06/09/12 Time: 12:53 Samiple: 1990 2010 Include-d observations:
36、 21VariableCoefficientS-td. Errort-StatisticProb.C-660.7700206j6408-3213Z250.0048X&0.0533260.00490210.877170.0000X50.194&620.0460194.3240260.0004R-squared0.980662Mean dependent var2559.848Adjusted R-squared0.978613S.D. dependent var1476.614S.E. of regressio-n216448SAkaike infio criterion13.72415Sum
37、squared res id843299.9Schwarz criterion13.87336Log likelih頑-141.1035F-statistic456.3973Durbin-Wat sen stat0.40E42Prob(F-statisti-c)o.oaoooo在滿足經(jīng)濟意義和可決系數(shù)的條件下選取X4作為進入模型的第二 個解釋變量,再次進行回歸則:作Y與X6、X4、X1的回歸,結果如下View | Pm c| 曰切己國 Print Vmrnei| Freeze | EstirnatEi| Forecast I Stats 職曲血|Dependent Variable: Y Me
38、thod: Least Squares Date: 0&/09/12 Time: 12:57 Sample: 1990 2010 Included observati-ons: 21VariableCoefficientSt-d. Errort-StatisticProb.C-3209.711931.83973+444880.0031x&0.0108870.0029983 6316500.0021X40.120+750.0060S519.798020.0000X10 0198110.0063163 1363620.0060R-squa.red0.998520Mean dependent var
39、2559 848A-djusted R-squared0.998259S.D. (dependent var1475.614S.E. of regression61.61775Akaike info criterion11.24942Sum squared res id64544 69Schwarz criterion11.44838Log ikelibDDd-114.1189F-statist ic3822 854Durbin-Watson stat2.089910Pro bF-stati stic)0.000000作Y與X6、X4、X2的回歸,結果如下 Equation: UNTFTLED
40、 Workfile:咪咪WJntitled 1=1 | 回 | S3 |ViEw Fhoc| Dbject| Print Name FEeze| EMEate| Forecast Ststs I Reside|epenient Variable: Y Method: Least Squares ate: 06/09/12 Time: 12:58 Sample: 1990 2010 Included observations: 21VariableCoefficientStd. Erro-rt-StatisticPro-b.C-981.7&68S20.997E-11958220 2482X60
41、0119720.003&633.2686370.0045X40.12S7980.00822515415230.0000X20.0135540.0161040.84166304117R-squareJ0.997767Mean dependent var2569.048Adjusted R-squareri0997361S.D. dependent var147G.614S.E. of regression76.85449Akaike info criterion11 515Sum squared resid97S1635Schwarz-criterion11.8G411L叫 likelihood
42、-110.4341F-statistic2520605Durbin-Watson stat1 396193Pro bF-statistic0.000000作Y與X6、X4、X3的回歸,結果如下切匠*| Pnx:|obj氐t| Print| P汽me Freere| Ewtirgte Foircastl Stats ResidMependent Variable: Y Method: Least Squares Date: 06/09/12 Time: 12:58Sample: 1990 2010Included observations: 50VariableCoefficientStri.
43、Errort-StatisticProb.C-2274.689141&.323-1.6050530.1278X50.0186360.006329Z.944-&580.0095X40.1226700.00734816.694560.0000X30.0208460.0146831.4196740.1749R-squared0.997978Mean dependent vsr2626.790Adjusted R-squared0.997538S.D. depen-dent war1481.920S.E. of regression72.62163Akaikc irfc criterion11.585
44、26Sum squared resid84382.41Schwarz criterion11.78441L&g likelihood-111.8626F-statistic2B31.907urbin-Watson stat1.561242P ro b(F-s tat i stic0.000000作Y與X6、X4、X5的回歸,結果如下O Equation: UNTITLED Workfile-: 4Untitledui 回Wew | Proc| Objgct| Print Name Freeze| EMemte | Fear的ca吐| tats ResidslDependent Variable
45、: Y Method: Least Squares ate: 06/0/12 Time: 12:59Sample: 1990 2010Included observations: 21VariableCoefficientStd. Errort-Stati sticProb.C-284-.8028T9.3ST43-3.5605960.0024X60.0130 D60 0039753.2720030.0046X401189970.01055811.270430.0000X50.0U3040.0225700.6337630.5347R-squared0.997717Mean -dependent
46、var2559 848AJj u sted R-s q u aredD 997315S.D. dependent var1476.614S.E. of regression76.62012Akaike info criterion11.&8263Sum squared res id99540.68Schwarz criterion11.8&158Log likelihood-118 一6676F-stati sti-c2476.846Durbin-Watson stat1170793Pro b(F-statistic)0.000000在滿足經(jīng)濟意義和可決系數(shù)的條件下選取X1作為進入模型的第三
47、個解釋變量,再次進行回歸則:作Y與X4、X6、X1、X2的回歸,結果如下Equation: UNTITLED Workf le-:映峰1=1 回吐| PrintPame|Fi匪回 Ewtigfe|F陡匚母|Stats|只曲血|Dependent Variable: YMethod: Least Squares ate: D&/09/12 Time: 13:01Sample: 1990 2010Included observations: 21VariableCoefficientStd. ErrorL-StatisticPro-b.C-3063.274946.4814-3.2399090.00
48、61XB0.0107400.00300B3.5724300.0026X40.1162170.00750715.480370.0000X10.0242150.0077843.110925O.OOE7X2-0.015&10.01&121-0.9714320.3458R.-squared0.998602Mean dependent var2669.848Adjusted R-squared0.998263S.D. dependent 盹r1476614S.E. of regressio-n61.72007Aka ike info criterion11.28735Sum squared res id
49、60949.87Schwarz criterion11.53E05Log likelih&od-113.5172F-statisti-c2867.E78Durbin-Wats-on stat2.132460Prob(F-stati Stic)0.000000T-作Y與X4、X6、X1、X3的回歸,結果如下CJ Equation: UNTITLED Worldlie-:咪咪dlJtitled1=1 回yiEwllVod 口切巳匚PrintName I Freeze I EEstimate I ForecastEtatsDependent Variable: Y4Method: Least Squ
50、aresDate: 06/09/12 Time: 13:02Sample: 1990 2010Included obseivati&ns: 20VariableCoefficientStd. Errort-Sta.ti sticPro-b.C-2973.97813Q8.2G3-2.2732270.0381X60 0099140 0069051.4357980.1716X40.1212040 005&2018.308850.0000X10 01953G0 0080162.2160140.0426X3-0.0019270.01G&990 11539B0.9097R-squared0.998476M
51、ean dependent var2626.790A-djusted R-squared0.998070S.D. dependent var1481.920S.E. of regression55.10023Akaike info criterion11.40205Sum squared res id63570.60Schwarz criterion11.B6098Log likelihtxxi-109.0205F-statistic2467.626Durbin-Watson stat2.213093Pro b(F-stati Stic)0.000000作Y與X4、X6、X1、X5的回歸,結果
52、如下Q Equation: UNTITLED Wc?kfiIm;咪咪4Utitledu 回4巨伸|尸口:| 口bj已匚PrintNaE|FrEEze| EM e ate | %旦由5土| Stats | Res-id |Dependent Variable: YMethod: Least SquaresDate: 06J09/12 Time: 13:03Sample: 19 9 0 2010Included obseivations: 21VariableCoefficientStd. Errort-Stati sticPro-b.C-332&.310926,4023-3.5905680.00
53、24X60.0122280.00317.33S536520.0014X40 1132340 00&58513.1898S0.0000X10.0206950.0052893.2905210.0046X50 0213890.0180941.1821050.2544R-squared0.998639Mean iependent var2559.B48A-djusted R-squared0.998298S.D. dependent var1476.E14S.E. of regression60.90998Akaike info criterion11.26093Sum squared resid59
54、360.41Schwarz criterion11.50962Log likelihood-113.2397F-stati stic2934.508Durbin-Watsen stat2.0E0097Pro b(F-stati Stic)0.000000可見加入其余任何一個變量都會導致系數(shù)符號與經(jīng)濟意義不符,故 最終修正后的回歸模型為:Y=-3209.71+0.01089X6+0.1205X4+0.01981X1(-3.4449)(3.6317)(19.7980)(3.1364)履2二0.99852=0.9983 F=3822.85 D.W.=2.0899異方差檢驗圖示法32與X6的散點圖如下
55、:說明e2與X6不存在異方差性。e2與X4的散點圖分析說明e2與X4不存在異方差性。廠2與X1的散點圖分析 Graph: UNITTLED Wcrkfile: IOUntitled| u | 回 | S3 |儺訕 Pec| Object| Printl Nmrnd AddTEKt| LinE/iShatJeTErnphtE| Z&orn|32000 -1280002400020000窟 1&000-120006000-。4000-oooQ _144-000152000160000 1l&400X1說明e2與X1不存在異方差性。G-Q檢驗對20組數(shù)據(jù)剔除中間五組剩下的進行分組后第一組(1990-
56、1997)數(shù)據(jù)的分析結果:O Equaticn: UNTITLED Workfile:咪;4UntitledView| Pmd 0切己國 Print Name | Freeze | EMrnate| F 口ecbs七 | Sts is | Ressids |Dependent Variable: Y Method: Least Squares ate: 0&/09/12 Time: S-ample: 1990 199-7 Included observations: E13:103VariableCoefficientStd. Error t-Stati sticProb.C4636.2671
57、143.983 40527400.0154X60.0274240.01125324369930.0714X40.09 配 90.0118250.2900000 0012X10.0270070.0035943.1065740.0360R.-squared0.998867Mean dependent var1239.425Adjusted R-squared0.990017S.D. dependent var561.3869S.E. of regression24.99686Akaike info criterion9.582230Sum squared res id2499 372Schwarz
58、 criterion9.621951Log likeliho-oKi-34.32892F-statistic1176.542Durbin-Wats-on stat2.286976Prob(F-stati sti-c)0.000002殘差平方和RSS1=2499.372第二組(2003-2010)數(shù)據(jù)的回歸結果:3 Equation: UNTITLED Workfile: SSSEUntitled=i 回Poi:|dEe吐| Print Name | Freeze | Etirnatg Fueh弱t| 5拍is 只應曲|Dependent Variable: YMethod: Least Squ
59、ares ate: 06/05/12 Time: 13:11Sample: 2003 2010Included observations: 3VariableCoefficientStd. Errort-Stati sticProb.C-3473.2863291.539-1.0552160.350SX60.0490560 0197752.4807480.0682X40.0715910.0300352 3835400.0757X10.0117010.0211900.5521810.6102R.-sq uared0.997113Mean dependent var4046.713Adjusted
60、R-squared0.994947S.D. dependent rar1155.640S.E. of regression82.14653Akaike info criterion11.96174Sum squared res id26992 25Schwarz criterion12.00146Log likelihio-oKi43.84696F-statistic460.4546 urbin-Wats-on stat1.770331ProbF-stati stic)0.000016殘差平方和RSS2=26992.25所以 F二RSS2/RSS1=26992.25/2499.372=10.7
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025屆湖南省常德市武陵區(qū)芷蘭實驗學校歷史班高三第二次聯(lián)考語文試卷含解析
- 《證券投資與分析》課件
- 10.1《勸學》課件 2024-2025學年統(tǒng)編版高中語文必修上冊-4
- 現(xiàn)代學徒制課題:中國特色學徒制發(fā)展動力機制研究(附:研究思路模板、可修改技術路線圖)
- 專題06 閱讀理解(單選)說明文20篇(解析版)-2024-2025學年七年級英語上學期期末名校真題進階練(深圳專用)
- 2025屆宜春市重點中學高三沖刺模擬語文試卷含解析
- 黑龍江省雞西虎林市東方紅林業(yè)局2025屆高考臨考沖刺語文試卷含解析
- 2025屆江西省贛州市崇義中學高三適應性調(diào)研考試數(shù)學試題含解析
- 2025屆陜西省渭南韓城市高三壓軸卷數(shù)學試卷含解析
- 2025屆福建省長樂中學高考數(shù)學全真模擬密押卷含解析
- 治療用碘131I化鈉膠囊-臨床用藥解讀
- 2024人教版五年級上冊數(shù)學期末口算題訓練
- 2024外研版初中英語單詞表匯總(七-九年級)中考復習必背
- 安徽省合肥市包河區(qū)2023-2024學年三年級上學期期末英語試卷
- 勞動爭議調(diào)解仲裁法
- 城鎮(zhèn)歷史與遺產(chǎn)保護智慧樹知到期末考試答案2024年
- 【培訓課件】醫(yī)療機構從業(yè)人員行為規(guī)范
- 車間生產(chǎn)中的質(zhì)量問題與質(zhì)量改進
- 危巖治理施工方案
- 同等學力申碩-同等學力(社會學)筆試(2018-2023年)真題摘選含答案
- 疾病健康宣教的課件
評論
0/150
提交評論