




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
企業(yè)管理中的競(jìng)爭(zhēng)問題董志勇博士副教授中國(guó)人民大學(xué)經(jīng)濟(jì)學(xué)院職業(yè)經(jīng)理人資格--中國(guó)最具價(jià)值的三大證書之一〖CCMC與企業(yè)管理〗
1企業(yè)管理中的競(jìng)爭(zhēng)問題董志勇博士副教授職業(yè)經(jīng)理人資格--中個(gè)人簡(jiǎn)介----中國(guó)人民大學(xué)經(jīng)濟(jì)學(xué)院院長(zhǎng)助理副教授經(jīng)濟(jì)學(xué)博士----2008年北京奧運(yùn)會(huì)特許商品調(diào)查委員會(huì)首席專家----2008年北京奧運(yùn)會(huì)旅游紀(jì)念品調(diào)查研究首席專家----歐美同學(xué)會(huì)會(huì)員(1998年)----中國(guó)寶雞外國(guó)語學(xué)院客座教授(1999年)----新加坡華夏學(xué)院學(xué)術(shù)委員會(huì)委員(2001年)----歐洲維多利亞大學(xué)客座教授(2002年)----亞洲發(fā)展銀行青年組專家(YoungEconomistofADB)(2002年)----清華大學(xué)繼續(xù)教育學(xué)院客座教授(2003年)----吉林電力高級(jí)經(jīng)濟(jì)顧問(2002年)----吉林白城市人民政府經(jīng)濟(jì)顧問(2003年)----國(guó)聯(lián)股份高級(jí)顧問(2003年)----中國(guó)人民大學(xué)僑聯(lián)副主席(2004年)----中國(guó)井岡山干部學(xué)院兼職教授(2005年)2個(gè)人簡(jiǎn)介2博弈論和策略行為GameTheory&StrategicBehaviors3博弈論和策略行為3LecturePlan/本講計(jì)劃GameTheoryStrategy&PayoffMatrixDominant&DominatedStrategiesNashEquilibriumMaximinStrategy&MixedStrategyStrategicBehavior4LecturePlan/本講計(jì)劃GameTheory4ElementsofaGameGamehasthefollowingelements:Players:whoisinvolved?Rules:whomoveswhen?Whatdotheyknowwhentheymove?Whatcantheydo?Outcomes:foreachpossiblesetofactionsbythelayers,whichistheoutcomeofthegamePayoffs:whataretheplayers’preferencesoverthepossibleoutcome?5ElementsofaGameGamehastheStrategy&Payoffs博弈論把人間一切競(jìng)爭(zhēng)活動(dòng)看成是玩策略游戲。這種策略游戲是在一定的游戲規(guī)則之下進(jìn)行它的兩個(gè)最基本的概念是策略與支付矩陣一種策略(Strategy)表示游戲參與者的一套運(yùn)作計(jì)劃和手段。如“降價(jià)15%”就是一種策略收益矩陣(Payoffmatrix)是表示游戲參與者在各種不同策略下的利潤(rùn)額的一套支付表格寡頭壟斷,尤其是雙寡頭壟斷競(jìng)爭(zhēng),特別適合使用博弈論研究6Strategy&Payoffs博弈論把人間一切競(jìng)爭(zhēng)活動(dòng)Strategy&PayoffsPrisoner’sDilemma(囚犯兩難)兩個(gè)嫌犯被捕并受到指控,但除非至少一人招供犯罪,警方并無充分證據(jù)將其按罪判刑警方將他們分開審訊(不能溝通),并對(duì)他們說明不同行動(dòng)帶來的后果。如果二人都不坦白,只能判簡(jiǎn)單刑事罪,坐牢1個(gè)月如果二人都坦白,兩人都會(huì)定罪,判刑六個(gè)月;如果其中一個(gè)坦白,另一個(gè)不坦白;那么坦白者馬上釋放(從寬)、不坦白者將會(huì)判刑九個(gè)月。請(qǐng)問兩個(gè)嫌犯該怎么辦?7Strategy&PayoffsPrisoner’sDStrategy&PayoffsPrisoner’sDilemma(囚犯兩難)策略(Strategy):“沉默”&“招認(rèn)”收益矩陣(PayoffMatrix)如下:囚犯2沉默招認(rèn)囚犯1沉默-1,-1-9,0招認(rèn)0,-9-6,-68Strategy&PayoffsPrisoner’sDStrategy&PayoffsPrisoner’sDilemma(囚犯兩難)囚犯兩難的問題在現(xiàn)實(shí)中常常出現(xiàn)。比如兩家企業(yè)的價(jià)格戰(zhàn)。企業(yè)B遵守協(xié)議違約降價(jià)企業(yè)A遵守協(xié)議100,10030,130違約降價(jià)130,3070,709Strategy&PayoffsPrisoner’sDStrategy&Payoffs性別戰(zhàn)博弈(TheBattleofSex)一男一女試圖安排一個(gè)晚上的娛樂內(nèi)容選擇(策略):“歌劇”、“拳擊”;不過男女有別收益矩陣(PayoffMatrix)如下:男(TheMan)歌劇拳擊女(TheLady)歌劇2,10,0拳擊0,01,210Strategy&Payoffs性別戰(zhàn)博弈(TheB1111Strategy&PayoffsOtherExamplesCoordinationgamesSmithandJonesaretryingtodecidewhethertodesignthecomputerstheyselltouselargeorsmallfloppydisksBothplayerswillsellmorecomputersiftheirdiskdrivesarecompatible.Strategies:“Large”or“Small”Payoffsareasfollows.12Strategy&PayoffsOtherExamplStrategy&PayoffsOtherExamplesCoordinationgames:payoffmatrixJonesLargeSmallSmithLarge2,2-1,-1Small-1,-11,113Strategy&PayoffsOtherExamplDominantStrategies(支配策略)Wesayaplayerhasadominantstrategyifitisthestrictlybestresponsetoanystrategiestheotherplayersmightpick.Intheanalysisofanygame,thefirststepistodetermineifanyplayerhasadominantstrategy.Ifsuchastrategyexists,thentheoutcomeofthegameshouldbeeasilydetermined,sincetheplayerwillusethedominantstrategyandotherplayerswillsubsequentlyadopttheirbestresponses.Examples:DoesthePrisoner’sDilemmahaveanydominantstrategy?HowabouttheCoordinationGame?14DominantStrategies(支配策略)WesDominatedStrategies(被支配策略)Adominatedstrategyisanalternativethatyieldsalowerpayoffthansomeotherstrategy,nomatterwhattheotherplayersinthegamedo.Arationalplayerwillneveruseadominatedstrategyintheactualactionofgameplaying.Henceitcanbeeliminated.Itisclearthatiftheexistenceofadominantstrategyimpliesthatallotherchoicesareinfactthedominatedstrategies.Butitispossiblethattherearedominatedstrategies,whilethereisnodominantstrategy15DominatedStrategies(被支配策略)AApplication:IterativeEliminationsExample16Application:IterativeEliminaNashEquilibrium(納什均衡)Eventhoughusingadominantstrategyoradominatedstrategyisapowerfulsimplewayof“solving”agame,thiskindofgameisusuallyanexception,insteadofanorm.Wemusthaveagenericmethodoffindingthesolution(s)ofagame.SolutionConceptsNashEquilibriumistheveryfirstsolutionconceptfornon-cooperativegames.17NashEquilibrium(納什均衡)EventhNashEquilibrium(納什均衡)EssenceofNashEquilibriumANashEquilibriumisdefinedasasetofstrategiessuchthatnonoftheparticipantsinthegamecanimprovetheirpayoff,giventhestrategiesoftheotherparticipants.NoonehasastrictlyincentivetodeviatefromthestrategiesinaNashEquilibrium.18NashEquilibrium(納什均衡)EssenceNashEquilibrium(納什均衡)ExampleConsiderthefollowinggame.Isthereanydominantordominatedstrategy?19NashEquilibrium(納什均衡)ExampleNashEquilibrium(納什均衡)ProblemofNashEquilibrium:Multiplesolutions!Examples:BattleofSex
CoordinationGame男(TheMan)歌劇拳擊女(TheLady)歌劇2,10,0拳擊0,01,2JonesLargeSmallSmithLarge2,2-1,-1Small-1,-11,120NashEquilibrium(納什均衡)ProblemNashEquilibrium(納什均衡)ProblemofNashEquilibrium:Insensitivetoextremepayoffs(risks)Example:DangerousCoordinationGameJonesLargeSmallSmithLarge2,2-1000,-1Small-1,-11,1InPractice,itisalmostsurethatSmithwantsto“playsafe”andnevertry“l(fā)arge”!21NashEquilibrium(納什均衡)ProblemNashEquilibrium(納什均衡)ProblemofNashEquilibrium:Non-existenceofpurestrategyNashEquilibriumExample:MatchthePenniesNodominantstrategy,nodominatedstrategy&nopurestrategyNashequilibriumaswell!BHeadTailAHead1,-1-1,1Tail-1,11,-122NashEquilibrium(納什均衡)ProblemNashEquilibrium(納什均衡)MixedStrategies(混合策略)Amixedstrategyisaprofilethatspecifiestheprobabilityofeachpurestrategythatistobeplayed.NashTheorem:Foranygamewithfinitenumberofpurestrategies,therealwaysexistsaNashEquilibriuminmixedstrategyform.23NashEquilibrium(納什均衡)MixedSNashEquilibrium(納什均衡)MixedStrategies(混合策略):ExamplesCoordinationGameJonesplays(Large,Small)accordingto(p,1-p)Smith’sexpectedpayoffsare:“Large”:2p+(-1)(1-p)=US(L|(p,1-p))“Small”:(-1)p+1(1-p)=US(S|(p,1-p))Smithshouldbe“indifferent”betweenthetwochoicesUS(L|(p,1-p))=US(S|(p,1-p))p=2/5HenceJones’optimalmixedstrategymustbe(0.4,0.6)Exercise:findtheoptimalmixedstrategyforSmith.MatchingthePenniesFindtheNashequilibriuminmixedstrategies24NashEquilibrium(納什均衡)MixedS25252626NashEquilibrium(納什均衡)NashEquilibrium不一定有效率TheCentipedeGame(蜈蚣蟲游戲):Inthisfinitegameofperfectinformation,therearetwoplayers,1and2.Theplayerseachstartwith1dollarinfrontofthem.Theyalternatesaying‘stop’or‘continue’,startingwithplayer1.Whenaplayersays‘continue’,1dollaristakenbyarefereefromherpileand2dollarsareputinheropponent’spile.Assoonaseitherplayersays‘stop’,plyisterminated,andeachplayerreceivesthemoneycurrentlyinherpile.Alternatively,playstopsifbothplayers’pilesreach100dollars.27NashEquilibrium(納什均衡)NashEqPlayer1Player2Player1Player2Player1Player2SCCCCCCSSSSS11032297100999998101100,10028Player1Player2Player1PlayerMaxminStrategies(最大最小策略)Wheneachplayerinthegamewillselecttheoptionthatmaximizestheminimumpossibleprofit(orotherdesirableoutcome),wesaythatthedecisionruleisamaxminstrategy.Thismayhappeninsituationswhenthemarketishighlycompetitiveanddecisionmakersareriskaverse.Sothisisausefulcaseformanagerialdecisionmaking.29MaxminStrategies(最大最小策略)When
3030迄今為止,對(duì)市場(chǎng)結(jié)構(gòu)分析都以假定管理決策的中心是謀求最大利益。但是在如壟斷寡頭那樣競(jìng)爭(zhēng)十分激烈的場(chǎng)合,決策者可能采取一種風(fēng)險(xiǎn)厭惡政策,即確保在可能的最壞結(jié)果中得到最好的結(jié)果。也就是每個(gè)博弈者將在可能最少的利潤(rùn)方案中選擇利潤(rùn)最大的方案。31迄今為止,對(duì)市場(chǎng)結(jié)構(gòu)分析都以假定管理決策的中心是謀求最大利益(續(xù))Nash均衡為(3,6)和(6,3)企業(yè)1最小32企業(yè)2最小32結(jié)果:雙方都沒有新產(chǎn)品推出在這個(gè)例子中,Nash不是小中取大解!32(續(xù))企業(yè)1最小企業(yè)2最小3MaxminStrategies(最大最小策略)Anotherexample:33MaxminStrategies(最大最小策略)AnotSequentialGame(順序性博弈)順序性博弈:先下弈的優(yōu)勢(shì)(First-moverAdvantage)迄今為止,我們都隱含假定雙方下弈者都是同時(shí)實(shí)施。在順序(Sequentialgame)中,就是有先有后了。進(jìn)入新的市場(chǎng)就是一個(gè)順序博弈的例子。34SequentialGame(順序性博弈)順序性博弈:先3535363637373838StrategicBehavior:BarriersofEntryFourtraditionalbarrierstoentry(passive)Economiesofscale,productdifferentiation,controloverscareresources,andlegalfactorsMarketEntryDecision(EntryGame)(aggressive)Presentvs.FutureProfits:Entry-LimitingPricingMainideas:Motivation:short-runMonopolypricingpracticeearns“toomuchprofits”,henceattractnewentrantsthatwilleatupthemarketshareanddrivedownthepricesinthelongrunEntry-LimitPricing:needtosetapricebelowtheshort-runmonopolyprice(Fig11-1,p.293)Figure11-2:profitstreams39StrategicBehavior:BarriersoStrategicBehavior:BarriersofEntryStigler’sOpenOligopolyModelObjective:maximizethepresentvalueofprofitInsomecases,thismaybeachievedbysettingapricedesignedtodeterentryOptimalstrategydependsonthediscountratesusedbythemanagerstodeterminethepresentvalueofprofitAComparisonEntry-LimitingPricing:long-timehorizon&alowerdiscountrateOpenOligopolyModel:shortplanninghorizon&abiggerdiscountrate40StrategicBehavior:BarriersoStrategicBehavior:BarriersofEntryPriceRetaliation(價(jià)格報(bào)復(fù))IncontrastwithLimitPricingthatkeepsthepricelowoveralongperiodoftime,anotherstrategicresponsetothethreatofentryistoretaliatebyreducingpriceswhenentryactuallydoesoccuroritappearsimminent.Whentheperceivedangerhasdiminished,pricescanbeincreasedtowhateverlevelmanagementviewsasappropriateformarketconditions.41StrategicBehavior:BarriersoStrategicBehavior:BarriersofEntryEstablishingCommitment:CapacityExpansion(擴(kuò)大生產(chǎn)能力)Astrategicresponsebyestablishedfirmstopreventthenewentrantsfromoccurringwouldbetoinvestinadditionalcapacity.Oncethisinvestmenthasbeenmade,itbecomesasunkcostandplacesexistingfirmsinapositiontoexpandtheirproductionasrelativelylowcost.Theexistenceofexcesscapacityprovidesastrongsignalthattheestablishedfirmscan(andprobablywill)reducepricesasastrategicresponsetoentryintheirmarket.42StrategicBehavior:BarriersoStrategicBehavior:BarriersofEntryPreemptiveAction:MarketSaturation(先發(fā)制人:使市場(chǎng)飽和)Oneentry-deterringstrategyfortheexistingfirmwouldbetodisperseitsproductionfacilities.Bytheexistingfirmspreadingitsplantsthroughoutthemarketarea(theanalysisofgeographicsaturationcanalsobeappliedtoproductcharacteristics)theopportunityforthenewentranttotakeadvantageofhightransportationcostsisgreatlyreduced.Example:BrandProliferationintheCerealIndustry43StrategicBehavior:Barrierso演講完畢,謝謝觀看!演講完畢,謝謝觀看!企業(yè)管理中的競(jìng)爭(zhēng)問題董志勇博士副教授中國(guó)人民大學(xué)經(jīng)濟(jì)學(xué)院職業(yè)經(jīng)理人資格--中國(guó)最具價(jià)值的三大證書之一〖CCMC與企業(yè)管理〗
45企業(yè)管理中的競(jìng)爭(zhēng)問題董志勇博士副教授職業(yè)經(jīng)理人資格--中個(gè)人簡(jiǎn)介----中國(guó)人民大學(xué)經(jīng)濟(jì)學(xué)院院長(zhǎng)助理副教授經(jīng)濟(jì)學(xué)博士----2008年北京奧運(yùn)會(huì)特許商品調(diào)查委員會(huì)首席專家----2008年北京奧運(yùn)會(huì)旅游紀(jì)念品調(diào)查研究首席專家----歐美同學(xué)會(huì)會(huì)員(1998年)----中國(guó)寶雞外國(guó)語學(xué)院客座教授(1999年)----新加坡華夏學(xué)院學(xué)術(shù)委員會(huì)委員(2001年)----歐洲維多利亞大學(xué)客座教授(2002年)----亞洲發(fā)展銀行青年組專家(YoungEconomistofADB)(2002年)----清華大學(xué)繼續(xù)教育學(xué)院客座教授(2003年)----吉林電力高級(jí)經(jīng)濟(jì)顧問(2002年)----吉林白城市人民政府經(jīng)濟(jì)顧問(2003年)----國(guó)聯(lián)股份高級(jí)顧問(2003年)----中國(guó)人民大學(xué)僑聯(lián)副主席(2004年)----中國(guó)井岡山干部學(xué)院兼職教授(2005年)46個(gè)人簡(jiǎn)介2博弈論和策略行為GameTheory&StrategicBehaviors47博弈論和策略行為3LecturePlan/本講計(jì)劃GameTheoryStrategy&PayoffMatrixDominant&DominatedStrategiesNashEquilibriumMaximinStrategy&MixedStrategyStrategicBehavior48LecturePlan/本講計(jì)劃GameTheory4ElementsofaGameGamehasthefollowingelements:Players:whoisinvolved?Rules:whomoveswhen?Whatdotheyknowwhentheymove?Whatcantheydo?Outcomes:foreachpossiblesetofactionsbythelayers,whichistheoutcomeofthegamePayoffs:whataretheplayers’preferencesoverthepossibleoutcome?49ElementsofaGameGamehastheStrategy&Payoffs博弈論把人間一切競(jìng)爭(zhēng)活動(dòng)看成是玩策略游戲。這種策略游戲是在一定的游戲規(guī)則之下進(jìn)行它的兩個(gè)最基本的概念是策略與支付矩陣一種策略(Strategy)表示游戲參與者的一套運(yùn)作計(jì)劃和手段。如“降價(jià)15%”就是一種策略收益矩陣(Payoffmatrix)是表示游戲參與者在各種不同策略下的利潤(rùn)額的一套支付表格寡頭壟斷,尤其是雙寡頭壟斷競(jìng)爭(zhēng),特別適合使用博弈論研究50Strategy&Payoffs博弈論把人間一切競(jìng)爭(zhēng)活動(dòng)Strategy&PayoffsPrisoner’sDilemma(囚犯兩難)兩個(gè)嫌犯被捕并受到指控,但除非至少一人招供犯罪,警方并無充分證據(jù)將其按罪判刑警方將他們分開審訊(不能溝通),并對(duì)他們說明不同行動(dòng)帶來的后果。如果二人都不坦白,只能判簡(jiǎn)單刑事罪,坐牢1個(gè)月如果二人都坦白,兩人都會(huì)定罪,判刑六個(gè)月;如果其中一個(gè)坦白,另一個(gè)不坦白;那么坦白者馬上釋放(從寬)、不坦白者將會(huì)判刑九個(gè)月。請(qǐng)問兩個(gè)嫌犯該怎么辦?51Strategy&PayoffsPrisoner’sDStrategy&PayoffsPrisoner’sDilemma(囚犯兩難)策略(Strategy):“沉默”&“招認(rèn)”收益矩陣(PayoffMatrix)如下:囚犯2沉默招認(rèn)囚犯1沉默-1,-1-9,0招認(rèn)0,-9-6,-652Strategy&PayoffsPrisoner’sDStrategy&PayoffsPrisoner’sDilemma(囚犯兩難)囚犯兩難的問題在現(xiàn)實(shí)中常常出現(xiàn)。比如兩家企業(yè)的價(jià)格戰(zhàn)。企業(yè)B遵守協(xié)議違約降價(jià)企業(yè)A遵守協(xié)議100,10030,130違約降價(jià)130,3070,7053Strategy&PayoffsPrisoner’sDStrategy&Payoffs性別戰(zhàn)博弈(TheBattleofSex)一男一女試圖安排一個(gè)晚上的娛樂內(nèi)容選擇(策略):“歌劇”、“拳擊”;不過男女有別收益矩陣(PayoffMatrix)如下:男(TheMan)歌劇拳擊女(TheLady)歌劇2,10,0拳擊0,01,254Strategy&Payoffs性別戰(zhàn)博弈(TheB5511Strategy&PayoffsOtherExamplesCoordinationgamesSmithandJonesaretryingtodecidewhethertodesignthecomputerstheyselltouselargeorsmallfloppydisksBothplayerswillsellmorecomputersiftheirdiskdrivesarecompatible.Strategies:“Large”or“Small”Payoffsareasfollows.56Strategy&PayoffsOtherExamplStrategy&PayoffsOtherExamplesCoordinationgames:payoffmatrixJonesLargeSmallSmithLarge2,2-1,-1Small-1,-11,157Strategy&PayoffsOtherExamplDominantStrategies(支配策略)Wesayaplayerhasadominantstrategyifitisthestrictlybestresponsetoanystrategiestheotherplayersmightpick.Intheanalysisofanygame,thefirststepistodetermineifanyplayerhasadominantstrategy.Ifsuchastrategyexists,thentheoutcomeofthegameshouldbeeasilydetermined,sincetheplayerwillusethedominantstrategyandotherplayerswillsubsequentlyadopttheirbestresponses.Examples:DoesthePrisoner’sDilemmahaveanydominantstrategy?HowabouttheCoordinationGame?58DominantStrategies(支配策略)WesDominatedStrategies(被支配策略)Adominatedstrategyisanalternativethatyieldsalowerpayoffthansomeotherstrategy,nomatterwhattheotherplayersinthegamedo.Arationalplayerwillneveruseadominatedstrategyintheactualactionofgameplaying.Henceitcanbeeliminated.Itisclearthatiftheexistenceofadominantstrategyimpliesthatallotherchoicesareinfactthedominatedstrategies.Butitispossiblethattherearedominatedstrategies,whilethereisnodominantstrategy59DominatedStrategies(被支配策略)AApplication:IterativeEliminationsExample60Application:IterativeEliminaNashEquilibrium(納什均衡)Eventhoughusingadominantstrategyoradominatedstrategyisapowerfulsimplewayof“solving”agame,thiskindofgameisusuallyanexception,insteadofanorm.Wemusthaveagenericmethodoffindingthesolution(s)ofagame.SolutionConceptsNashEquilibriumistheveryfirstsolutionconceptfornon-cooperativegames.61NashEquilibrium(納什均衡)EventhNashEquilibrium(納什均衡)EssenceofNashEquilibriumANashEquilibriumisdefinedasasetofstrategiessuchthatnonoftheparticipantsinthegamecanimprovetheirpayoff,giventhestrategiesoftheotherparticipants.NoonehasastrictlyincentivetodeviatefromthestrategiesinaNashEquilibrium.62NashEquilibrium(納什均衡)EssenceNashEquilibrium(納什均衡)ExampleConsiderthefollowinggame.Isthereanydominantordominatedstrategy?63NashEquilibrium(納什均衡)ExampleNashEquilibrium(納什均衡)ProblemofNashEquilibrium:Multiplesolutions!Examples:BattleofSex
CoordinationGame男(TheMan)歌劇拳擊女(TheLady)歌劇2,10,0拳擊0,01,2JonesLargeSmallSmithLarge2,2-1,-1Small-1,-11,164NashEquilibrium(納什均衡)ProblemNashEquilibrium(納什均衡)ProblemofNashEquilibrium:Insensitivetoextremepayoffs(risks)Example:DangerousCoordinationGameJonesLargeSmallSmithLarge2,2-1000,-1Small-1,-11,1InPractice,itisalmostsurethatSmithwantsto“playsafe”andnevertry“l(fā)arge”!65NashEquilibrium(納什均衡)ProblemNashEquilibrium(納什均衡)ProblemofNashEquilibrium:Non-existenceofpurestrategyNashEquilibriumExample:MatchthePenniesNodominantstrategy,nodominatedstrategy&nopurestrategyNashequilibriumaswell!BHeadTailAHead1,-1-1,1Tail-1,11,-166NashEquilibrium(納什均衡)ProblemNashEquilibrium(納什均衡)MixedStrategies(混合策略)Amixedstrategyisaprofilethatspecifiestheprobabilityofeachpurestrategythatistobeplayed.NashTheorem:Foranygamewithfinitenumberofpurestrategies,therealwaysexistsaNashEquilibriuminmixedstrategyform.67NashEquilibrium(納什均衡)MixedSNashEquilibrium(納什均衡)MixedStrategies(混合策略):ExamplesCoordinationGameJonesplays(Large,Small)accordingto(p,1-p)Smith’sexpectedpayoffsare:“Large”:2p+(-1)(1-p)=US(L|(p,1-p))“Small”:(-1)p+1(1-p)=US(S|(p,1-p))Smithshouldbe“indifferent”betweenthetwochoicesUS(L|(p,1-p))=US(S|(p,1-p))p=2/5HenceJones’optimalmixedstrategymustbe(0.4,0.6)Exercise:findtheoptimalmixedstrategyforSmith.MatchingthePenniesFindtheNashequilibriuminmixedstrategies68NashEquilibrium(納什均衡)MixedS69257026NashEquilibrium(納什均衡)NashEquilibrium不一定有效率TheCentipedeGame(蜈蚣蟲游戲):Inthisfinitegameofperfectinformation,therearetwoplayers,1and2.Theplayerseachstartwith1dollarinfrontofthem.Theyalternatesaying‘stop’or‘continue’,startingwithplayer1.Whenaplayersays‘continue’,1dollaristakenbyarefereefromherpileand2dollarsareputinheropponent’spile.Assoonaseitherplayersays‘stop’,plyisterminated,andeachplayerreceivesthemoneycurrentlyinherpile.Alternatively,playstopsifbothplayers’pilesreach100dollars.71NashEquilibrium(納什均衡)NashEqPlayer1Player2Player1Player2Player1Player2SCCCCCCSSSSS11032297100999998101100,10072Player1Player2Player1PlayerMaxminStrategies(最大最小策略)Wheneachplayerinthegamewillselecttheoptionthatmaximizestheminimumpossibleprofit(orotherdesirableoutcome),wesaythatthedecisionruleisamaxminstrategy.Thismayhappeninsituationswhenthemarketishighlycompetitiveanddecisionmakersareriskaverse.Sothisisausefulcaseformanagerialdecisionmaking.73MaxminStrategies(最大最小策略)When
7430迄今為止,對(duì)市場(chǎng)結(jié)構(gòu)分析都以假定管理決策的中心是謀求最大利益。但是在如壟斷寡頭那樣競(jìng)爭(zhēng)十分激烈的場(chǎng)合,決策者可能采取一種風(fēng)險(xiǎn)厭惡政策,即確保在可能的最壞結(jié)果中得到最好的結(jié)果。也就是每個(gè)博弈者將在可能最少的利潤(rùn)方案中選擇利潤(rùn)最大的方案。75迄今為止,對(duì)市場(chǎng)結(jié)構(gòu)分析都以假定管理決策的中心是謀求最大利益(續(xù))Nash均衡為(3,6)和(6,3)企業(yè)1最小32企業(yè)2最小32結(jié)果:雙方都沒有新產(chǎn)品推出在這個(gè)例子中,Nash不是小中取大解!76(續(xù))企業(yè)1最小企業(yè)2最小3MaxminStrategies(最大最小策略)Anotherexample:77MaxminStrategies(最大最小策略)AnotSequentialGame(順序性博弈)順序性博弈:先下弈的優(yōu)勢(shì)(First-moverAdvantage)迄今為止,我們都隱含假定雙方下弈者都是同時(shí)實(shí)施。在順序(Sequentialgame)中,就是有先有后了。進(jìn)入新的市場(chǎng)就是一個(gè)順序博弈的例子。78SequentialGame(順序性博弈)順序性博弈:先7935803681378238StrategicBehavior:BarriersofEntryFourtraditionalbarrierstoentry(passive)Economiesofscale,productdifferentiation,controloverscareresources,andlegalfactorsMarketEntryDecision(EntryGame)(aggressive)Presentvs.FutureProfits:Entry-LimitingPricingMainideas:Motivation:short-runMonopolypricingpracticeearns“toomuchprofits”,henceattractnewentrantsthatwilleatupthemarketshareanddrivedownthepricesinthelongrunEntry-LimitPricing:needtosetapricebelowthe
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025企業(yè)辦公租賃合同模板【標(biāo)準(zhǔn)】
- 部門承包合同二零二五年
- 2025年耐磨球段項(xiàng)目發(fā)展計(jì)劃
- 勞務(wù)分包單位中途退場(chǎng)協(xié)議書
- 保護(hù)膜合同樣本
- 簡(jiǎn)易鐵棚安裝合同范例二零二五年
- 二零二五版論行政合同中的行政主體優(yōu)先權(quán)
- 二零二五定制品銷售合同范例
- 個(gè)人服務(wù)設(shè)計(jì)合同樣本
- 二零二五工人工資協(xié)議書模板
- 專題08 八年級(jí)下冊(cè)易混易錯(cuò)總結(jié)-備戰(zhàn)2024年中考道德與法治一輪復(fù)習(xí)知識(shí)清單(全國(guó)通用)
- 浙江宇翔職業(yè)技術(shù)學(xué)院?jiǎn)握新殰y(cè)參考試題庫(含答案)
- 提高手衛(wèi)生正確率品管圈課件
- 醫(yī)院勞務(wù)派遣投標(biāo)方案(技術(shù)方案)
- 高中數(shù)學(xué)開放題賞析
- 非工傷人道主義賠償協(xié)議(標(biāo)準(zhǔn)版)
- 中華民族的復(fù)興
- 品質(zhì)部工作計(jì)劃
- 《浙江省工業(yè)建設(shè)項(xiàng)目用地控制指標(biāo)》(修訂)
- 【區(qū)域地理】《日本》【公開課教學(xué)PPT課件】高中地理
- 配對(duì)齒輪參數(shù)全程計(jì)算(史上最全最好用的齒輪計(jì)算表格)
評(píng)論
0/150
提交評(píng)論