【課件】2.1.2離散型隨機變量的分布列_第1頁
【課件】2.1.2離散型隨機變量的分布列_第2頁
【課件】2.1.2離散型隨機變量的分布列_第3頁
【課件】2.1.2離散型隨機變量的分布列_第4頁
【課件】2.1.2離散型隨機變量的分布列_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2.1.2離散型隨機變量的分布列一般地,如果隨機試驗的結(jié)果,可以用一個變量來表示,那么這樣的變量稱為隨機變量。通常用大寫拉丁字母X,Y,Z(或小寫希臘字母ξ,

η,ζ);用小寫拉丁字x,y,z(加上適當(dāng)下標(biāo))等表示隨機變量取的可能值。

隨機試驗中的事件就可以通過隨機變量的取值表達出來.ξxiksi

克西η

eta

eit

艾塔ζzetazat

截塔引例

1擲一枚質(zhì)地均勻的硬幣一次,用X表示擲得正面的次數(shù),則隨機變量X的可能取值有哪些?X取值為0,1且{X=0}表示“正面向上的次數(shù)為0”,{X=1}表示“正面向上的次數(shù)為1”,那么我們要表示每個事件的概率就可以這樣表示:P{正面向上的次數(shù)為0}=P({X=0}),以后簡記為P(

X=0).兩點分布列;X~0-1分布;X~兩點分布引例

2

拋擲一枚骰子,所得的點數(shù)有哪些值?取每個值的概率是多少?

解:則126543⑵求出了的每一個取值的概率.⑴列出了隨機變量的所有取值.

的取值有1、2、3、4、5、6隨機變量的概率分布列設(shè)隨機變量的所有可能的取值為則稱表格的每一個取值的概率為

,············為隨機變量

的概率分布,簡稱的分布列.注:1、分布列的構(gòu)成⑴列出了隨機變量

的所有取值.⑵求出了的每一個取值的概率.2、分布列的性質(zhì)⑴⑵例、判斷下列是否是概率分布XP-20.500.20.3024ξP00.710.150.152YP0lg11

lg2

lg52ηP1-23例2

同時擲兩顆質(zhì)地均勻的骰子,觀察朝上一面出現(xiàn)的點數(shù),求兩顆骰子中出現(xiàn)的最大點數(shù)X的概率分布,并求X大于2小于5的概率P(2<X<5)。數(shù)學(xué)運用例1

同時擲一顆質(zhì)地均勻的骰子,觀察出現(xiàn)的點數(shù),求出現(xiàn)的點數(shù)Y的概率分布并求Y大于2小于5的概率P(2<Y<5)。X的值出現(xiàn)的點情況數(shù)1(1,1)12(2,2)(2,1)(1,2)33(3,3)(3,2)(3,1)(2,3)(1,3)54(4,4)(4,3)(4,2)(4,1)(3,4)(2,4)(1,4)75(5,5)(5,4)(5,3)(5,2)(5,1)(4,5)(3,5)(2,5)(1,5)96(6,6)(6,5)(6,4)(6,3)(6,2)(6,1)(5,6)(4,6)(3,6)(2,6)(1,6)11課堂練習(xí):2、設(shè)隨機變量的分布列為則的值為

.1、設(shè)隨機變量的分布列如下:4321m則m的值為

.小結(jié):隨機變量的概率分布列1、分布列的構(gòu)成⑴列出了隨機變量

的所有取值.⑵求出了的每一個取值的概率.2、分布列的性質(zhì)⑴⑵思考:已知隨機變量的分布列如下:-2-13210分別求出隨機變量⑴;⑵的分布列.解:⑴由可得的取值為-1、、0、、1、且相應(yīng)取值的概率沒有變化∴的分布列為:-110思考:已知隨機變量的分布列如下:-2-13210分別求出隨機變量⑴;⑵的分布列.解:∴的分布列為:⑵由可得的取值為0、1、4、90941引例

:一袋中裝有6個同樣大小的小球,編號為1、2、3、4、5、6,現(xiàn)從中隨機取出3個小球,以表示取出球的最大號碼,求的分布列.解:表示其中一個球號碼等于“3”,另兩個都比“3”小∴∴∴∴∴隨機變量的分布列為:6543的所有取值為:3、4、5、6.表示其中一個球號碼等于“4”,另兩個都比“4”小表示其中一個球號碼等于“5”,另兩個都比“5”小表示其中一個球號碼等于“3”,另兩個都比“3”小超幾何分布的概率背景

一批產(chǎn)品有N件,其中有M

件次品.現(xiàn)從中取出

n

件.令X:取出n

件產(chǎn)品中的次品數(shù).則X的分布列為如果一個隨機變量X的分布列為超幾何分布記為:X~H(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論