2023屆江蘇省溧中、省揚中、鎮(zhèn)江一中、江都中學高考沖刺數(shù)學模擬試題含解析_第1頁
2023屆江蘇省溧中、省揚中、鎮(zhèn)江一中、江都中學高考沖刺數(shù)學模擬試題含解析_第2頁
2023屆江蘇省溧中、省揚中、鎮(zhèn)江一中、江都中學高考沖刺數(shù)學模擬試題含解析_第3頁
2023屆江蘇省溧中、省揚中、鎮(zhèn)江一中、江都中學高考沖刺數(shù)學模擬試題含解析_第4頁
2023屆江蘇省溧中、省揚中、鎮(zhèn)江一中、江都中學高考沖刺數(shù)學模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2023年高考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,,則等于()A. B. C. D.2.已知集合,,則中元素的個數(shù)為()A.3 B.2 C.1 D.03.如圖,在四邊形中,,,,,,則的長度為()A. B.C. D.4.復數(shù)的模為().A. B.1 C.2 D.5.已知三點A(1,0),B(0,),C(2,),則△ABC外接圓的圓心到原點的距離為()A. B.C. D.6.設直線過點,且與圓:相切于點,那么()A. B.3 C. D.17.已知函數(shù),若函數(shù)有三個零點,則實數(shù)的取值范圍是()A. B. C. D.8.費馬素數(shù)是法國大數(shù)學家費馬命名的,形如的素數(shù)(如:)為費馬索數(shù),在不超過30的正偶數(shù)中隨機選取一數(shù),則它能表示為兩個不同費馬素數(shù)的和的概率是()A. B. C. D.9.在正方體中,點、分別為、的中點,過點作平面使平面,平面若直線平面,則的值為()A. B. C. D.10.下列說法正確的是()A.命題“,”的否定形式是“,”B.若平面,,,滿足,則C.隨機變量服從正態(tài)分布(),若,則D.設是實數(shù),“”是“”的充分不必要條件11.已知,函數(shù)在區(qū)間上恰有個極值點,則正實數(shù)的取值范圍為()A. B. C. D.12.設(是虛數(shù)單位),則()A. B.1 C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知在△ABC中,(2sin32°,2cos32°),(cos77°,﹣cos13°),則?_____,△ABC的面積為_____.14.已知是拋物線的焦點,過作直線與相交于兩點,且在第一象限,若,則直線的斜率是_________.15.已知橢圓的左焦點為,點在橢圓上且在軸的上方,若線段的中點在以原點為圓心,為半徑的圓上,則直線的斜率是_______.16.某次足球比賽中,,,,四支球隊進入了半決賽.半決賽中,對陣,對陣,獲勝的兩隊進入決賽爭奪冠軍,失利的兩隊爭奪季軍.已知他們之間相互獲勝的概率如下表所示.獲勝概率—0.40.30.8獲勝概率0.6—0.70.5獲勝概率0.70.3—0.3獲勝概率0.20.50.7—則隊獲得冠軍的概率為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在開展學習強國的活動中,某校高三數(shù)學教師成立了黨員和非黨員兩個學習組,其中黨員學習組有4名男教師、1名女教師,非黨員學習組有2名男教師、2名女教師,高三數(shù)學組計劃從兩個學習組中隨機各選2名教師參加學校的挑戰(zhàn)答題比賽.(1)求選出的4名選手中恰好有一名女教師的選派方法數(shù);(2)記X為選出的4名選手中女教師的人數(shù),求X的概率分布和數(shù)學期望.18.(12分)已知,,且.(1)求的最小值;(2)證明:.19.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)若,設,證明:,,使.20.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)若函數(shù)在上存在兩個極值點,,且,證明.21.(12分)已知直線的參數(shù)方程為(,為參數(shù)),曲線的極坐標方程為.(1)將曲線的極坐標方程化為直角坐標方程,并說明曲線的形狀;(2)若直線經(jīng)過點,求直線被曲線截得的線段的長.22.(10分)已知函數(shù)(1)若,不等式的解集;(2)若,求實數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

進行交集的運算即可.【詳解】,1,2,,,,1,.故選:.【點睛】本題主要考查了列舉法、描述法的定義,考查了交集的定義及運算,考查了計算能力,屬于基礎題.2、C【解析】

集合表示半圓上的點,集合表示直線上的點,聯(lián)立方程組求得方程組解的個數(shù),即為交集中元素的個數(shù).【詳解】由題可知:集合表示半圓上的點,集合表示直線上的點,聯(lián)立與,可得,整理得,即,當時,,不滿足題意;故方程組有唯一的解.故.故選:C.【點睛】本題考查集合交集的求解,涉及圓和直線的位置關系的判斷,屬基礎題.3、D【解析】

設,在中,由余弦定理得,從而求得,再由由正弦定理得,求得,然后在中,用余弦定理求解.【詳解】設,在中,由余弦定理得,則,從而,由正弦定理得,即,從而,在中,由余弦定理得:,則.故選:D【點睛】本題主要考查正弦定理和余弦定理的應用,還考查了數(shù)形結(jié)合的思想和運算求解的能力,屬于中檔題.4、D【解析】

利用復數(shù)代數(shù)形式的乘除運算化簡,再由復數(shù)模的計算公式求解.【詳解】解:,復數(shù)的模為.故選:D.【點睛】本題主要考查復數(shù)代數(shù)形式的乘除運算,考查復數(shù)模的求法,屬于基礎題.5、B【解析】

選B.考點:圓心坐標6、B【解析】

過點的直線與圓:相切于點,可得.因此,即可得出.【詳解】由圓:配方為,,半徑.∵過點的直線與圓:相切于點,∴;∴;故選:B.【點睛】本小題主要考查向量數(shù)量積的計算,考查圓的方程,屬于基礎題.7、B【解析】

根據(jù)所給函數(shù)解析式,畫出函數(shù)圖像.結(jié)合圖像,分段討論函數(shù)的零點情況:易知為的一個零點;對于當時,由代入解析式解方程可求得零點,結(jié)合即可求得的范圍;對于當時,結(jié)合導函數(shù),結(jié)合導數(shù)的幾何意義即可判斷的范圍.綜合后可得的范圍.【詳解】根據(jù)題意,畫出函數(shù)圖像如下圖所示:函數(shù)的零點,即.由圖像可知,,所以是的一個零點,當時,,若,則,即,所以,解得;當時,,則,且若在時有一個零點,則,綜上可得,故選:B.【點睛】本題考查了函數(shù)圖像的畫法,函數(shù)零點定義及應用,根據(jù)零點個數(shù)求參數(shù)的取值范圍,導數(shù)的幾何意義應用,屬于中檔題.8、B【解析】

基本事件總數(shù),能表示為兩個不同費馬素數(shù)的和只有,,,共有個,根據(jù)古典概型求出概率.【詳解】在不超過的正偶數(shù)中隨機選取一數(shù),基本事件總數(shù)能表示為兩個不同費馬素數(shù)的和的只有,,,共有個則它能表示為兩個不同費馬素數(shù)的和的概率是本題正確選項:【點睛】本題考查概率的求法,考查列舉法解決古典概型問題,是基礎題.9、B【解析】

作出圖形,設平面分別交、于點、,連接、、,取的中點,連接、,連接交于點,推導出,由線面平行的性質(zhì)定理可得出,可得出點為的中點,同理可得出點為的中點,結(jié)合中位線的性質(zhì)可求得的值.【詳解】如下圖所示:設平面分別交、于點、,連接、、,取的中點,連接、,連接交于點,四邊形為正方形,、分別為、的中點,則且,四邊形為平行四邊形,且,且,且,則四邊形為平行四邊形,,平面,則存在直線平面,使得,若平面,則平面,又平面,則平面,此時,平面為平面,直線不可能與平面平行,所以,平面,,平面,平面,平面平面,,,所以,四邊形為平行四邊形,可得,為的中點,同理可證為的中點,,,因此,.故選:B.【點睛】本題考查線段長度比值的計算,涉及線面平行性質(zhì)的應用,解答的關鍵就是找出平面與正方體各棱的交點位置,考查推理能力與計算能力,屬于中等題.10、D【解析】

由特稱命題的否定是全稱命題可判斷選項A;可能相交,可判斷B選項;利用正態(tài)分布的性質(zhì)可判斷選項C;或,利用集合間的包含關系可判斷選項D.【詳解】命題“,”的否定形式是“,”,故A錯誤;,,則可能相交,故B錯誤;若,則,所以,故,所以C錯誤;由,得或,故“”是“”的充分不必要條件,D正確.故選:D.【點睛】本題考查命題的真假判斷,涉及到特稱命題的否定、面面相關的命題、正態(tài)分布、充分條件與必要條件等,是一道容易題.11、B【解析】

先利用向量數(shù)量積和三角恒等變換求出,函數(shù)在區(qū)間上恰有個極值點即為三個最值點,解出,,再建立不等式求出的范圍,進而求得的范圍.【詳解】解:令,解得對稱軸,,又函數(shù)在區(qū)間恰有個極值點,只需解得.故選:.【點睛】本題考查利用向量的數(shù)量積運算和三角恒等變換與三角函數(shù)性質(zhì)的綜合問題.(1)利用三角恒等變換及輔助角公式把三角函數(shù)關系式化成或的形式;(2)根據(jù)自變量的范圍確定的范圍,根據(jù)相應的正弦曲線或余弦曲線求值域或最值或參數(shù)范圍.12、A【解析】

先利用復數(shù)代數(shù)形式的四則運算法則求出,即可根據(jù)復數(shù)的模計算公式求出.【詳解】∵,∴.故選:A.【點睛】本題主要考查復數(shù)代數(shù)形式的四則運算法則的應用,以及復數(shù)的模計算公式的應用,屬于容易題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

①根據(jù)向量數(shù)量積的坐標表示結(jié)合兩角差的正弦公式的逆用即可得解;②結(jié)合①求出,根據(jù)面積公式即可得解.【詳解】①2(sin32°?cos77°﹣cos32°?sin77°),②,,∴,∴.故答案為:.【點睛】此題考查平面向量與三角函數(shù)解三角形綜合應用,涉及平面向量數(shù)量積的坐標表示,三角恒等變換,根據(jù)三角形面積公式求解三角形面積,綜合性強.14、【解析】

作出準線,過作準線的垂線,利用拋物線的定義把拋物線點到焦點的距離轉(zhuǎn)化為點到準線的距離,利用平面幾何知識計算出直線的斜率.【詳解】設是準線,過作于,過作于,過作于,如圖,則,,∵,∴,∴,∴,,∴,∴直線斜率為.故答案為:.【點睛】本題考查拋物線的焦點弦問題,解題關鍵是利用拋物線的定義,把拋物線上點到焦點距離轉(zhuǎn)化為該點到準線的距離,用平面幾何方法求解.15、【解析】

結(jié)合圖形可以發(fā)現(xiàn),利用三角形中位線定理,將線段長度用坐標表示成圓的方程,與橢圓方程聯(lián)立可進一步求解.利用焦半徑及三角形中位線定理,則更為簡潔.【詳解】方法1:由題意可知,由中位線定理可得,設可得,聯(lián)立方程可解得(舍),點在橢圓上且在軸的上方,求得,所以方法2:焦半徑公式應用解析1:由題意可知,由中位線定理可得,即求得,所以.【點睛】本題主要考查橢圓的標準方程、橢圓的幾何性質(zhì)、直線與圓的位置關系,利用數(shù)形結(jié)合思想,是解答解析幾何問題的重要途徑.16、0.18【解析】

根據(jù)表中信息,可得勝C的概率;分類討論B或D進入決賽,再計算A勝B或A勝C的概率即可求解.【詳解】由表中信息可知,勝C的概率為;若B進入決賽,B勝D的概率為,則A勝B的概率為;若D進入決賽,D勝B的概率為,則A勝D的概率為;由相應的概率公式知,則A獲得冠軍的概率為.故答案為:0.18【點睛】本題考查了獨立事件的概率應用,互斥事件的概率求法,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)28種;(2)分布見解析,.【解析】

(1)分這名女教師分別來自黨員學習組與非黨員學習組,可得恰好有一名女教師的選派方法數(shù);(2)X的可能取值為,再求出X的每個取值的概率,可得X的概率分布和數(shù)學期望.【詳解】解:(1)選出的4名選手中恰好有一名女生的選派方法數(shù)為種.(2)X的可能取值為0,1,2,3.,,,.故X的概率分布為:X0123P所以.【點睛】本題主要考查組合數(shù)與組合公式及離散型隨機變量的期望和方差,相對不難,注意運算的準確性.18、(1)(2)證明見解析【解析】

(1)利用基本不等式即可求得最小值;(2)關鍵是配湊系數(shù),進而利用基本不等式得證.【詳解】(1),當且僅當“”時取等號,故的最小值為;(2),當且僅當時取等號,此時.故.【點睛】本題主要考查基本不等式的運用,屬于基礎題.19、(1)見解析;(2)證明見解析.【解析】

(1),分,,,四種情況討論即可;(2)問題轉(zhuǎn)化為,利用導數(shù)找到與即可證明.【詳解】(1).①當時,恒成立,當時,;當時,,所以,在上是減函數(shù),在上是增函數(shù).②當時,,.當時,;當時,;當時,,所以,在上是減函數(shù),在上是增函數(shù),在上是減函數(shù).③當時,,則在上是減函數(shù).④當時,,當時,;當時,;當時,,所以,在上是減函數(shù),在上是增函數(shù),在上是減函數(shù).(2)由題意,得.由(1)知,當,時,,.令,,故在上是減函數(shù),有,所以,從而.,,則,令,顯然在上是增函數(shù),且,,所以存在使,且在上是減函數(shù),在上是增函數(shù),,所以,所以,命題成立.【點睛】本題考查利用導數(shù)研究函數(shù)的單調(diào)性以及證明不等式的問題,考查學生邏輯推理能力,是一道較難的題.20、(1)若,則在定義域內(nèi)遞增;若,則在上單調(diào)遞增,在上單調(diào)遞減(2)證明見解析【解析】

(1),分,討論即可;(2)由題可得到,故只需證,,即,采用換元法,轉(zhuǎn)化為函數(shù)的最值問題來處理.【詳解】由已知,,若,則在定義域內(nèi)遞增;若,則在上單調(diào)遞增,在上單調(diào)遞減.(2)由題意,對求導可得從而,是的兩個變號零點,因此下證:,即證令,即證:,對求導可得,,,因為故,所以在上單調(diào)遞減,而,從而所以在單調(diào)遞增,所以,即于是【點睛】本題考查利用導數(shù)研究函數(shù)的單調(diào)性以及證明不等式,考查學生邏輯推理能力、轉(zhuǎn)化與化歸能力,是一道有一定難度的壓軸題.21、(1)曲線表示的是焦點為,準線為的拋物線;(2)8.【解析】試題分析:(1)將曲線的極坐標方程為兩邊同時乘以,利用極坐標與直角坐標之間的關系即可得出其直角坐標方程;(2)由直線經(jīng)過點,可得的值,再將直線的參數(shù)方程代入曲線的標準方程,由直線參數(shù)方程的幾何意義可得直線被曲線截得的線段的長.試題解析:(1)由可得,即,∴曲線表示的是焦點為,準線為的拋物線.(2)將代入,得,∴,∵,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論